Suppr超能文献

大熊猫识别。

Giant Panda Identification.

出版信息

IEEE Trans Image Process. 2021;30:2837-2849. doi: 10.1109/TIP.2021.3055627. Epub 2021 Feb 12.

Abstract

The lack of automatic tools to identify giant panda makes it hard to keep track of and manage giant pandas in wildlife conservation missions. In this paper, we introduce a new Giant Panda Identification (GPID) task, which aims to identify each individual panda based on an image. Though related to the human re-identification and animal classification problem, GPID is extraordinarily challenging due to subtle visual differences between pandas and cluttered global information. In this paper, we propose a new benchmark dataset iPanda-50 for GPID. The iPanda-50 consists of 6, 874 images from 50 giant panda individuals, and is collected from panda streaming videos. We also introduce a new Feature-Fusion Network with Patch Detector (FFN-PD) for GPID. The proposed FFN-PD exploits the patch detector to detect discriminative local patches without using any part annotations or extra location sub-networks, and builds a hierarchical representation by fusing both global and local features to enhance the inter-layer patch feature interactions. Specifically, an attentional cross-channel pooling is embedded in the proposed FFN-PD to improve the identify-specific patch detectors. Experiments performed on the iPanda-50 datasets demonstrate the proposed FFN-PD significantly outperforms competing methods. Besides, experiments on other fine-grained recognition datasets (i.e., CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that the proposed FFN-PD outperforms existing state-of-the-art methods.

摘要

缺乏自动工具来识别大熊猫,使得在野生动物保护任务中难以跟踪和管理大熊猫。在本文中,我们介绍了一个新的大熊猫识别(GPID)任务,旨在根据图像识别每个个体大熊猫。虽然与人类重新识别和动物分类问题有关,但由于大熊猫之间的细微视觉差异和杂乱的全局信息,GPID 极具挑战性。在本文中,我们提出了一个新的基准数据集 iPanda-50 用于 GPID。iPanda-50 由 50 只大熊猫个体的 6874 张图像组成,是从熊猫流媒体视频中收集的。我们还为 GPID 引入了一种新的基于特征融合和补丁检测器的网络(FFN-PD)。所提出的 FFN-PD 利用补丁检测器来检测有区别的局部补丁,而无需使用任何部分注释或额外的位置子网,并通过融合全局和局部特征来构建分层表示,以增强层间补丁特征的相互作用。具体来说,在提出的 FFN-PD 中嵌入了注意力交叉通道池化,以提高识别特定的补丁检测器。在 iPanda-50 数据集上进行的实验表明,所提出的 FFN-PD 明显优于竞争方法。此外,在其他细粒度识别数据集(即 CUB-200-2011、斯坦福汽车和 FGVC-Aircraft)上的实验表明,所提出的 FFN-PD 优于现有的最先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验