Chen Peng, Swarup Pranjal, Matkowski Wojciech Michal, Kong Adams Wai Kin, Han Su, Zhang Zhihe, Rong Hou
Chengdu Research Base of Giant Panda Breeding Chengdu China.
Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife Chengdu China.
Ecol Evol. 2020 Mar 10;10(7):3561-3573. doi: 10.1002/ece3.6152. eCollection 2020 Apr.
As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image-based panda face recognition method.In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established.The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection.This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost-effective than the approaches used in the previous panda surveys.
作为一种高度濒危物种,大熊猫在过去几十年中受到了广泛关注。人们在大熊猫保护和繁殖方面付出了巨大努力,在维持大熊猫种群数量方面取得了喜人的成果。为了评估保护和管理策略的有效性,识别每只大熊猫至关重要。然而,这仍然是一项具有挑战性的任务,因为现有的方法,如传统追踪方法、基于足迹识别的鉴别方法和分子生物学方法,具有侵入性、不准确、成本高或操作困难等问题。成像技术的进步使得数字图像和视频在大熊猫保护和管理中得到广泛应用,这使得通过基于图像的大熊猫面部识别方法以非侵入性方式识别个体大熊猫成为可能。近年来,深度学习在计算机视觉和模式识别领域取得了巨大成功。在本研究中,针对大熊猫面部识别开发了一种全自动深度学习算法,该算法由一系列用于大熊猫面部检测、分割、对齐和身份预测的深度神经网络(DNN)组成。为了开发和评估该算法,建立了最大的大熊猫图像数据集,包含来自218只不同大熊猫的6441张图像,占全球圈养大熊猫的39.78%。该算法在大熊猫识别方面的准确率达到了96.27%,在检测方面的准确率达到了100%。这项研究表明,大熊猫的面部可用于识别大熊猫个体。这使得可以利用安装在其栖息地的摄像头来监测它们的种群数量和行为。这种非侵入性方法比以往大熊猫调查中使用的方法更具成本效益。