Liu Lina, Liao Yiyi, Wang Yue, Geiger Andreas, Liu Yong
IEEE Trans Image Process. 2021;30:2850-2861. doi: 10.1109/TIP.2021.3055629. Epub 2021 Feb 12.
This paper addresses the guided depth completion task in which the goal is to predict a dense depth map given a guidance RGB image and sparse depth measurements. Recent advances on this problem nurture hopes that one day we can acquire accurate and dense depth at a very low cost. A major challenge of guided depth completion is to effectively make use of extremely sparse measurements, e.g., measurements covering less than 1% of the image pixels. In this paper, we propose a fully differentiable model that avoids convolving on sparse tensors by jointly learning depth interpolation and refinement. More specifically, we propose a differentiable kernel regression layer that interpolates the sparse depth measurements via learned kernels. We further refine the interpolated depth map using a residual depth refinement layer which leads to improved performance compared to learning absolute depth prediction using a vanilla network. We provide experimental evidence that our differentiable kernel regression layer not only enables end-to-end training from very sparse measurements using standard convolutional network architectures, but also leads to better depth interpolation results compared to existing heuristically motivated methods. We demonstrate that our method outperforms many state-of-the-art guided depth completion techniques on both NYUv2 and KITTI. We further show the generalization ability of our method with respect to the density and spatial statistics of the sparse depth measurements.
本文探讨了有引导的深度完成任务,其目标是在给定引导RGB图像和稀疏深度测量值的情况下预测密集的深度图。该问题的最新进展让人期待有朝一日我们能够以极低的成本获取准确且密集的深度信息。有引导的深度完成的一个主要挑战是有效利用极其稀疏的测量值,例如,测量值覆盖的图像像素不到1%。在本文中,我们提出了一种完全可微的模型,通过联合学习深度插值和细化来避免对稀疏张量进行卷积。更具体地说,我们提出了一个可微内核回归层,通过学习内核来插值稀疏深度测量值。我们使用残差深度细化层进一步细化插值后的深度图,与使用普通网络学习绝对深度预测相比,这带来了性能上的提升。我们提供了实验证据,表明我们的可微内核回归层不仅能够使用标准卷积网络架构从非常稀疏的测量值进行端到端训练,而且与现有的基于启发式的方法相比,还能产生更好的深度插值结果。我们证明,我们的方法在NYUv2和KITTI数据集上均优于许多先进的有引导深度完成技术。我们进一步展示了我们的方法在稀疏深度测量的密度和空间统计方面的泛化能力。