Suppr超能文献

当存在现有筛查测试时,采用混合设计评估新的生物标志物。

Hybrid design evaluating new biomarkers when there is an existing screening test.

机构信息

Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

Stat Med. 2021 Apr 15;40(8):2037-2054. doi: 10.1002/sim.8890. Epub 2021 Feb 4.

Abstract

Development of cancer screening biomarkers usually follows the Early Detection Research Network 5-Phase guideline in Pepe et al. A key feature of this guide is that the phased development follows a sequential order, moving to the next phase only when the current phase study is complete and has met its target performance. Motivated by a newly funded Newly onset Diabetes cohort study, we propose a design evaluating new biomarkers to discriminate between cases and controls in the presence of an existing screening test. The proposed design achieves two goals: (1) avoiding bias in estimating sensitivity or specificity in predicting cancer at a given time period prior to clinical diagnosis, using data from both screening detected cancers in Phase IV study and clinically diagnosed cancers in Phase III study; and (2) building a panel with biomarkers for Phase III and IV studies based on all data. A simulation study shows that the proposed design outperforms both a conventional method using data in Phase III arm only and a naive method using data in Phase III and IV arms ignoring the difference between the time of screening the detected cancer and the time of clinical diagnosis. The proposed design yields a smaller standard error of the estimation and increases the statistical power to confirm biomarker performance. This proposed method has the potential to shorten the cancer screening biomarker development process, use resources more effectively, and bring benefits to patients quickly.

摘要

癌症筛查生物标志物的开发通常遵循 Pepe 等人的早期检测研究网络 5 阶段指南。该指南的一个关键特征是分阶段的开发遵循顺序进行,只有当前阶段的研究完成并达到其目标性能后,才能进入下一阶段。受新资助的新发糖尿病队列研究的启发,我们提出了一种设计方案,用于评估新的生物标志物,以在存在现有筛查测试的情况下区分病例和对照。该设计方案实现了两个目标:(1)通过使用第四阶段研究中筛查检测到的癌症和第三阶段研究中临床诊断的癌症的数据,避免在临床诊断前的特定时间段内预测癌症时对敏感性或特异性的估计产生偏差;(2)基于所有数据为第三阶段和第四阶段研究构建一个包含生物标志物的面板。模拟研究表明,与仅使用第三阶段数据的传统方法和忽略筛查检测到的癌症时间和临床诊断时间之间差异的使用第三阶段和第四阶段数据的简单方法相比,该设计方案具有更好的性能。该设计方案可以减少估计的标准误差,并提高确认生物标志物性能的统计功效。该方法有可能缩短癌症筛查生物标志物的开发过程,更有效地利用资源,并迅速为患者带来益处。

相似文献

4

本文引用的文献

1
A Bayesian Phase I/II Trial Design for Immunotherapy.一种用于免疫疗法的贝叶斯 I/II 期试验设计。
J Am Stat Assoc. 2018;113(523):1016-1027. doi: 10.1080/01621459.2017.1383260. Epub 2018 Jun 28.
2
Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes.用于确定新发糖尿病患者罹患胰腺癌风险的模型。
Gastroenterology. 2018 Sep;155(3):730-739.e3. doi: 10.1053/j.gastro.2018.05.023. Epub 2018 Jun 11.
9
A review of phase 2-3 clinical trial designs.2-3期临床试验设计综述。
Lifetime Data Anal. 2008 Mar;14(1):37-53. doi: 10.1007/s10985-007-9049-x. Epub 2007 Sep 2.
10
Evaluating new screening tests for breast cancer.评估乳腺癌的新型筛查测试。
BMJ. 2006 Mar 25;332(7543):678-9. doi: 10.1136/bmj.332.7543.678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验