Suppr超能文献

存在测量误差时分层生物标志物试验的设计与分析。

On the design and the analysis of stratified biomarker trials in the presence of measurement error.

机构信息

Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina.

Global Statistical Science, Eli Lilly, Indianapolis, Indiana.

出版信息

Stat Med. 2021 May 30;40(12):2783-2799. doi: 10.1002/sim.8928. Epub 2021 Mar 16.

Abstract

A major emphasis in precision medicine is to optimally treat subgroups of patients who may benefit from certain therapeutic agents. And as such, enormous resources and innovative clinical trials designs in oncology are devoted to identifying predictive biomarkers. Predictive biomarkers are ones that will identify patients that are more likely to respond to specific therapies and they are usually discovered through retrospective analysis from large randomized phase II or phase III trials. One important design to consider is the stratified biomarker design, where patients will have their specimens obtained at baseline and the biomarker status will be assessed prior to random assignment. Regardless of their biomarker status, patients will be randomized to either an experimental arm or the standard of care arm. The stratified biomarker design can be used to test for a treatment-biomarker interaction in predicting a time-to event outcome. Many biomarkers, however, are derived from tissues from patients, and their levels may be heterogeneous. As a result, biomarker levels may be measured with error and this would have an adverse impact on the power of a stratified biomarker clinical trial. We present a trial design and an analysis framework for the stratified biomarker design. We show that the naïve test is biased and provide bias-corrected estimators for computing the sample size and the 95% confidence interval when testing for a treatment-biomarker interaction in predicting a time to event outcome. We propose a sample size formula that adjusts for misclassification and apply it in the design of a phase III clinical trial in renal cancer.

摘要

精准医学的一个主要重点是优化治疗某些治疗药物可能受益的亚组患者。因此,肿瘤学领域投入了大量资源和创新临床试验设计来识别预测性生物标志物。预测性生物标志物是那些可以识别更有可能对特定疗法产生反应的患者的标志物,它们通常是通过对大型随机 II 期或 III 期试验的回顾性分析发现的。需要考虑的一个重要设计是分层生物标志物设计,在此设计中,患者将在基线时获得其标本,并且在随机分组之前将评估生物标志物状态。无论其生物标志物状态如何,患者都将被随机分配到实验组或标准护理组。分层生物标志物设计可用于检验治疗生物标志物相互作用在预测事件发生时间的结果。然而,许多生物标志物是从患者的组织中获得的,其水平可能存在异质性。因此,生物标志物水平可能会出现测量误差,这将对分层生物标志物临床试验的效力产生不利影响。我们提出了一种用于分层生物标志物设计的试验设计和分析框架。我们表明,原始检验存在偏差,并提供了用于计算样本量和 95%置信区间的偏差校正估计值,用于检验治疗生物标志物相互作用在预测事件发生时间结果中的作用。我们提出了一个调整分类错误的样本量公式,并将其应用于肾癌 III 期临床试验的设计中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f7/8113124/3c6a038b6be2/nihms-1693644-f0001.jpg

相似文献

3
Randomized phase II trial designs with biomarkers.随机化二期临床试验设计与生物标志物。
J Clin Oncol. 2012 Sep 10;30(26):3304-9. doi: 10.1200/JCO.2012.43.3946. Epub 2012 Aug 6.
7
On Enrichment Strategies for Biomarker Stratified Clinical Trials.关于生物标志物分层临床试验的富集策略
J Biopharm Stat. 2018;28(2):292-308. doi: 10.1080/10543406.2017.1379532. Epub 2017 Oct 30.
10
Phase II cancer clinical trials for biomarker-guided treatments.用于生物标志物引导治疗的癌症II期临床试验。
J Biopharm Stat. 2018;28(2):256-263. doi: 10.1080/10543406.2017.1372777. Epub 2017 Nov 27.

引用本文的文献

本文引用的文献

2
The Precision of Evidence Needed to Practice "Precision Medicine".实施“精准医学”所需证据的精准性。
N Engl J Med. 2019 Jun 20;380(25):2472-2474. doi: 10.1056/NEJMe1906088. Epub 2019 Jun 3.
5
The evidence framework for precision cancer medicine.精准肿瘤医学的证据基础。
Nat Rev Clin Oncol. 2018 Mar;15(3):183-192. doi: 10.1038/nrclinonc.2017.186. Epub 2017 Dec 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验