Suppr超能文献

下水道系统中混凝土腐蚀微生物群落中硫氧化细菌的演替。

Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems.

作者信息

Okabe Satoshi, Odagiri Mitsunori, Ito Tsukasa, Satoh Hisashi

机构信息

Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan.

出版信息

Appl Environ Microbiol. 2007 Feb;73(3):971-80. doi: 10.1128/AEM.02054-06. Epub 2006 Dec 1.

Abstract

Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O3(2-)). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the sulfuric acid produced penetrated through the corroded concrete layer and reacted with the sound concrete below.

摘要

长期以来,下水道系统中的微生物诱导混凝土腐蚀(MICC)一直是一个严重的问题。更好地了解负责硫酸生成的微生物群落成员的演替,对于有效控制MICC至关重要。在本研究中,通过基于非培养的16S rRNA基因的分子技术,对一个下水道系统中正在腐蚀的混凝土上细菌群落中的硫氧化细菌(SOB)演替进行了为期1年的原位研究。结果表明,至少六种SOB物种的系统发育型参与了MICC过程,主要的SOB物种按以下顺序变化:丝状硫细菌属、嗜铅硫杆菌、中间硫单胞菌、那不勒斯嗜盐硫杆菌、嗜酸嗜酸菌和氧化硫硫杆菌。氧化硫硫杆菌是一种嗜酸嗜热的SOB,在1年后严重腐蚀的混凝土中占主导地位(占EUB338混合探针杂交细胞的70%)。SOB物种的这种演替可能取决于混凝土表面的pH值、营养特性(例如自养或兼性营养)以及SOB利用不同硫化合物(例如H2S、S0和S2O3(2-))的能力。此外,多种异养细菌物种(例如耐盐、嗜中性和嗜酸细菌)与这些SOB相关联。这些微生物的微生物演替参与了混凝土的定殖和硫酸的产生。此外,微生物群落成员的垂直分布表明,氧化硫硫杆菌在整个严重腐蚀的混凝土(石膏)层中最为占主导地位,并且氧化硫硫杆菌在最高表面(1.5毫米)层中最为丰富,由于氧气和H2S传输限制,随深度呈对数下降。这表明氧化硫硫杆菌产生的硫酸主要发生在混凝土表面,产生的硫酸穿透腐蚀的混凝土层并与下面的完好混凝土反应。

相似文献

1
Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems.
Appl Environ Microbiol. 2007 Feb;73(3):971-80. doi: 10.1128/AEM.02054-06. Epub 2006 Dec 1.
5
Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers.
Water Res. 2019 Mar 1;150:392-402. doi: 10.1016/j.watres.2018.11.083. Epub 2018 Dec 6.
6
High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.
PLoS One. 2015 Mar 6;10(3):e0116400. doi: 10.1371/journal.pone.0116400. eCollection 2015.
7
Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.
Water Res. 2016 Feb 1;89:321-9. doi: 10.1016/j.watres.2015.11.066. Epub 2015 Dec 14.
10
Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.
J Hazard Mater. 2011 May 30;189(3):685-91. doi: 10.1016/j.jhazmat.2011.03.005. Epub 2011 Mar 9.

引用本文的文献

2
Advances in the Mitigation of Microbiologically Influenced Concrete Corrosion: A Snapshot.
Materials (Basel). 2024 Nov 28;17(23):5846. doi: 10.3390/ma17235846.
4
Improvement of Li and Mn bioleaching from spent lithium-ion batteries, using step-wise addition of biogenic sulfuric acid by .
Heliyon. 2024 Sep 6;10(18):e37447. doi: 10.1016/j.heliyon.2024.e37447. eCollection 2024 Sep 30.
5
Microbiological aspects of sewage odor problems in the urban environment - a review.
Biol Futur. 2024 Sep;75(3):371-377. doi: 10.1007/s42977-024-00242-2. Epub 2024 Sep 9.
6
Establishing a green biodesulfurization process for iron ore concentrates in stirred tank and leaching column bioreactors using .
Front Bioeng Biotechnol. 2023 Dec 13;11:1324417. doi: 10.3389/fbioe.2023.1324417. eCollection 2023.
7
Biomineralization To Prevent Microbially Induced Corrosion on Concrete for Sustainable Marine Infrastructure.
Environ Sci Technol. 2024 Jan 9;58(1):522-533. doi: 10.1021/acs.est.3c04680. Epub 2023 Dec 5.
8
Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention.
Microorganisms. 2023 Sep 12;11(9):2299. doi: 10.3390/microorganisms11092299.
9
Review on Microbially Influenced Concrete Corrosion.
Microorganisms. 2023 Aug 12;11(8):2076. doi: 10.3390/microorganisms11082076.
10
Inhibition Effect of on the Corrosion of X70 Pipeline Steel Caused by Sulfate-Reducing Bacteria.
Materials (Basel). 2023 Apr 5;16(7):2896. doi: 10.3390/ma16072896.

本文引用的文献

1
A nitrite microsensor for profiling environmental biofilms.
Appl Environ Microbiol. 1997 Mar;63(3):973-7. doi: 10.1128/aem.63.3.973-977.1997.
3
Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms.
Appl Environ Microbiol. 2005 May;71(5):2520-9. doi: 10.1128/AEM.71.5.2520-2529.2005.
4
ARB: a software environment for sequence data.
Nucleic Acids Res. 2004 Feb 25;32(4):1363-71. doi: 10.1093/nar/gkh293. Print 2004.
6
Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth.
Water Res. 2002 May;36(10):2636-42. doi: 10.1016/s0043-1354(01)00473-0.
8
Analysis of the microbial communities on corroded concrete sewer pipes--a case study.
Appl Microbiol Biotechnol. 2001 Dec;57(5-6):776-85. doi: 10.1007/s002530100826.
9
In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants.
Appl Environ Microbiol. 2001 Nov;67(11):5273-84. doi: 10.1128/AEM.67.11.5273-5284.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验