Suppr超能文献

用于CIGS太阳能电池的有效Se扩散阻挡层TiN薄膜的等离子体增强原子层沉积

Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells.

作者信息

Woo Hyun-Jae, Lee Woo-Jae, Koh Eun-Kyong, Jang Seung Il, Kim Shinho, Moon Hyoungseok, Kwon Se-Hun

机构信息

School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea.

Home Appliance & Air Solution Company R&D Center, LG Electronics, 170 Seongsanpaechong-Ro, Seongsan-Gu, Changwon-Si, Geyeongsangnam-Do 51533, Korea.

出版信息

Nanomaterials (Basel). 2021 Feb 2;11(2):370. doi: 10.3390/nano11020370.

Abstract

Plasma-enhanced atomic layer deposition (PEALD) of TiN thin films were investigated as an effective Se diffusion barrier layer for Cu (In, Ga) Se (CIGS) solar cells. Before the deposition of TiN thin film on CIGS solar cells, a saturated growth rate of 0.67 Å/cycle was confirmed using tetrakis(dimethylamido)titanium (TDMAT) and N plasma at 200 °C. Then, a Mo (≈30 nm)/PEALD-TiN (≈5 nm)/Mo (≈600 nm) back contact stack was fabricated to investigate the effects of PEALD-TiN thin films on the Se diffusion. After the selenization process, it was revealed that ≈5 nm-thick TiN thin films can effectively block Se diffusion and that only the top Mo layer prepared on the TiN thin films reacted with Se to form a MoSe layer. Without the TiN diffusion barrier layer, however, Se continuously diffused along the grain boundaries of the entire Mo back contact electrode. Finally, the adoption of a TiN diffusion barrier layer improved the photovoltaic efficiency of the CIGS solar cell by approximately 10%.

摘要

研究了采用等离子体增强原子层沉积(PEALD)法制备的TiN薄膜作为铜铟镓硒(CIGS)太阳能电池有效硒扩散阻挡层的性能。在CIGS太阳能电池上沉积TiN薄膜之前,使用四(二甲基氨基)钛(TDMAT)和氮等离子体在200℃下确认了饱和生长速率为0.67 Å/循环。然后,制备了Mo(≈30 nm)/PEALD-TiN(≈5 nm)/Mo(≈600 nm)背接触叠层,以研究PEALD-TiN薄膜对硒扩散的影响。硒化过程后发现,约5 nm厚的TiN薄膜能有效阻挡硒扩散,且仅在TiN薄膜上制备的顶部Mo层与硒反应形成MoSe层。然而,没有TiN扩散阻挡层时,硒会沿着整个Mo背接触电极的晶界持续扩散。最后,采用TiN扩散阻挡层使CIGS太阳能电池的光伏效率提高了约10%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bf3/7912980/2bea86a2b764/nanomaterials-11-00370-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验