He Lu, Rahaman Mahfujur, Madeira Teresa I, Zahn Dietrich R T
Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany.
Nanomaterials (Basel). 2021 Feb 2;11(2):376. doi: 10.3390/nano11020376.
Tip-enhanced Raman spectroscopy (TERS) has experienced tremendous progress over the last two decades. Despite detecting single molecules and achieving sub-nanometer spatial resolution, attaining high TERS sensitivity is still a challenging task due to low reproducibility of tip fabrication, especially regarding very sharp tip apices. Here, we present an approach for achieving strong TERS sensitivity via a systematic study of the near-field enhancement properties in the so-called gap-mode TERS configurations using the combination of finite element method (FEM) simulations and TERS experiments. In the simulation study, a gold tip apex is fixed at 80 nm of diameter, and the substrate consists of 20 nm high gold nanodiscs with diameter varying from 5 nm to 120 nm placed on a flat extended gold substrate. The local electric field distributions are computed in the spectral range from 500 nm to 800 nm with the tip placed both at the center and the edge of the gold nanostructure. The model is then compared with the typical gap-mode TERS configuration, in which a tip of varying diameter from 2 nm to 160 nm is placed in the proximity of a gold thin film. Our simulations show that the tip-nanodisc combined system provides much improved TERS sensitivity compared to the conventional gap-mode TERS configuration. We find that for the same tip diameter, the spatial resolution achieved in the tip-nanodisc model is much better than that observed in the conventional gap-mode TERS, which requires a very sharp metal tip to achieve the same spatial resolution on an extended metal substrate. Finally, TERS experiments are conducted on gold nanodisc arrays using home-built gold tips to validate our simulation results. Our simulations provide a guide for designing and realization of both high-spatial resolution and strong TERS intensity in future TERS experiments.
在过去二十年中,针尖增强拉曼光谱(TERS)取得了巨大进展。尽管能够检测单分子并实现亚纳米级空间分辨率,但由于针尖制造的重现性较低,尤其是在非常尖锐的针尖顶端方面,实现高TERS灵敏度仍然是一项具有挑战性的任务。在此,我们提出一种方法,通过结合有限元方法(FEM)模拟和TERS实验,对所谓的间隙模式TERS配置中的近场增强特性进行系统研究,以实现强大的TERS灵敏度。在模拟研究中,将金针尖顶端固定为直径80纳米,衬底由直径从5纳米到120纳米、高度为20纳米的金纳米盘组成,放置在平坦的扩展金衬底上。在500纳米至800纳米的光谱范围内计算局部电场分布,针尖分别放置在金纳米结构的中心和边缘。然后将该模型与典型的间隙模式TERS配置进行比较,在典型配置中,将直径从2纳米到160纳米变化的针尖放置在金薄膜附近。我们的模拟表明,与传统的间隙模式TERS配置相比,针尖 - 纳米盘组合系统提供了显著提高的TERS灵敏度。我们发现,对于相同的针尖直径,在针尖 - 纳米盘模型中实现的空间分辨率比在传统间隙模式TERS中观察到的要好得多,在传统间隙模式TERS中,需要非常尖锐的金属针尖才能在扩展的金属衬底上实现相同的空间分辨率。最后,使用自制的金针尖对金纳米盘阵列进行TERS实验,以验证我们的模拟结果。我们的模拟为未来TERS实验中高空间分辨率和强TERS强度的设计与实现提供了指导。