Milekhin Ilya A, Milekhin Alexander G, Zahn Dietrich R T
Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany.
Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany.
Nanomaterials (Basel). 2022 Jun 26;12(13):2197. doi: 10.3390/nano12132197.
This work presents an overview of the latest results and new data on the optical response from spherical CdSe nanocrystals (NCs) obtained using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). SERS is based on the enhancement of the phonon response from nanoobjects such as molecules or inorganic nanostructures placed on metal nanostructured substrates with a localized surface plasmon resonance (LSPR). A drastic SERS enhancement for optical phonons in semiconductor nanostructures can be achieved by a proper choice of the plasmonic substrate, for which the LSPR energy coincides with the laser excitation energy. The resonant enhancement of the optical response makes it possible to detect mono- and submonolayer coatings of CdSe NCs. The combination of Raman scattering with atomic force microscopy (AFM) using a metallized probe represents the basis of TERS from semiconductor nanostructures and makes it possible to investigate their phonon properties with nanoscale spatial resolution. Gap-mode TERS provides further enhancement of Raman scattering by optical phonon modes of CdSe NCs with nanometer spatial resolution due to the highly localized electric field in the gap between the metal AFM tip and a plasmonic substrate and opens new pathways for the optical characterization of single semiconductor nanostructures and for revealing details of their phonon spectrum at the nanometer scale.
这项工作概述了利用表面增强拉曼散射(SERS)和针尖增强拉曼散射(TERS)获得的球形硒化镉纳米晶体(NCs)光学响应的最新结果和新数据。SERS基于放置在具有局域表面等离子体共振(LSPR)的金属纳米结构衬底上的纳米物体(如分子或无机纳米结构)的声子响应增强。通过适当选择等离子体衬底,可实现半导体纳米结构中光学声子的显著SERS增强,其中LSPR能量与激光激发能量一致。光学响应的共振增强使得检测硒化镉NCs的单层和亚单层涂层成为可能。使用金属化探针将拉曼散射与原子力显微镜(AFM)相结合,是半导体纳米结构TERS的基础,并使得能够以纳米级空间分辨率研究其声子特性。由于金属AFM针尖与等离子体衬底之间间隙中的高度局域电场,间隙模式TERS以纳米空间分辨率进一步增强了硒化镉NCs光学声子模式的拉曼散射,并为单个半导体纳米结构的光学表征以及揭示其纳米级声子谱细节开辟了新途径。