Suppr超能文献

基于临床信息的微生物群落层次非负矩阵分解。

Hierarchical non-negative matrix factorization using clinical information for microbial communities.

机构信息

Division of Systems Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 4668550, Japan.

School of Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 61-8873, Japan.

出版信息

BMC Genomics. 2021 Feb 4;22(1):104. doi: 10.1186/s12864-021-07401-y.

Abstract

BACKGROUND

The human microbiome forms very complex communities that consist of hundreds to thousands of different microorganisms that not only affect the host, but also participate in disease processes. Several state-of-the-art methods have been proposed for learning the structure of microbial communities and to investigate the relationship between microorganisms and host environmental factors. However, these methods were mainly designed to model and analyze single microbial communities that do not interact with or depend on other communities. Such methods therefore cannot comprehend the properties between interdependent systems in communities that affect host behavior and disease processes.

RESULTS

We introduce a novel hierarchical Bayesian framework, called BALSAMICO (BAyesian Latent Semantic Analysis of MIcrobial COmmunities), which uses microbial metagenome data to discover the underlying microbial community structures and the associations between microbiota and their environmental factors. BALSAMICO models mixtures of communities in the framework of nonnegative matrix factorization, taking into account environmental factors. We proposes an efficient procedure for estimating parameters. A simulation then evaluates the accuracy of the estimated parameters. Finally, the method is used to analyze clinical data. In this analysis, we successfully detected bacteria related to colorectal cancer.

CONCLUSIONS

These results show that the method not only accurately estimates the parameters needed to analyze the connections between communities of microbiota and their environments, but also allows for the effective detection of these communities in real-world circumstances.

摘要

背景

人类微生物组形成了非常复杂的群落,其中包含数百到数千种不同的微生物,这些微生物不仅影响宿主,而且还参与疾病过程。已经提出了几种最先进的方法来学习微生物群落的结构,并研究微生物与宿主环境因素之间的关系。然而,这些方法主要是为了对不与其他群落相互作用或依赖其他群落的单一微生物群落进行建模和分析。因此,这些方法无法理解影响宿主行为和疾病过程的群落中相互依存系统之间的特性。

结果

我们引入了一种新颖的层次贝叶斯框架,称为 BALSAMICO(基于微生物群落的潜在语义分析的贝叶斯模型),它使用微生物宏基因组数据来发现潜在的微生物群落结构以及微生物组与其环境因素之间的关联。BALSAMICO 在非负矩阵分解的框架内对社区的混合物进行建模,同时考虑环境因素。我们提出了一种用于估计参数的有效程序。然后进行模拟以评估估计参数的准确性。最后,该方法用于分析临床数据。在这项分析中,我们成功检测到与结直肠癌相关的细菌。

结论

这些结果表明,该方法不仅可以准确估计分析微生物组群落及其环境之间联系所需的参数,而且还可以有效地检测现实环境中的这些群落。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f4/7863378/888fe2ef959b/12864_2021_7401_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验