Suppr超能文献

BioMiCo:一种用于推断微生物群落结构的有监督贝叶斯模型。

BioMiCo: a supervised Bayesian model for inference of microbial community structure.

机构信息

Department of Mathematics and Statistics, Dalhousie University, Halifax, NS Canada.

Department of Biology, Dalhousie University, Halifax, NS Canada.

出版信息

Microbiome. 2015 Mar 10;3:8. doi: 10.1186/s40168-015-0073-x. eCollection 2015.

Abstract

BACKGROUND

Microbiome samples often represent mixtures of communities, where each community is composed of overlapping assemblages of species. Such mixtures are complex, the number of species is huge and abundance information for many species is often sparse. Classical methods have a limited value for identifying complex features within such data.

RESULTS

Here, we describe a novel hierarchical model for Bayesian inference of microbial communities (BioMiCo). The model takes abundance data derived from environmental DNA, and models the composition of each sample by a two-level hierarchy of mixture distributions constrained by Dirichlet priors. BioMiCo is supervised, using known features for samples and appropriate prior constraints to overcome the challenges posed by many variables, sparse data, and large numbers of rare species. The model is trained on a portion of the data, where it learns how assemblages of species are mixed to form communities and how assemblages are related to the known features of each sample. Training yields a model that can predict the features of new samples. We used BioMiCo to build models for three serially sampled datasets and tested their predictive accuracy across different time points. The first model was trained to predict both body site (hand, mouth, and gut) and individual human host. It was able to reliably distinguish these features across different time points. The second was trained on vaginal microbiomes to predict both the Nugent score and individual human host. We found that women having normal and elevated Nugent scores had distinct microbiome structures that persisted over time, with additional structure within women having elevated scores. The third was trained for the purpose of assessing seasonal transitions in a coastal bacterial community. Application of this model to a high-resolution time series permitted us to track the rate and time of community succession and accurately predict known ecosystem-level events.

CONCLUSION

BioMiCo provides a framework for learning the structure of microbial communities and for making predictions based on microbial assemblages. By training on carefully chosen features (abiotic or biotic), BioMiCo can be used to understand and predict transitions between complex communities composed of hundreds of microbial species.

摘要

背景

微生物组样本通常代表群落的混合物,其中每个群落由重叠的物种组合组成。这种混合物很复杂,物种数量巨大,许多物种的丰度信息往往很稀疏。经典方法在识别此类数据中的复杂特征方面的价值有限。

结果

在这里,我们描述了一种用于微生物群落贝叶斯推断的新层次模型(BioMiCo)。该模型采用源自环境 DNA 的丰度数据,并通过由 Dirichlet 先验约束的两级混合物分布模型来对每个样本的组成进行建模。BioMiCo 是监督的,使用样本的已知特征和适当的先验约束来克服许多变量、稀疏数据和大量稀有物种带来的挑战。该模型在数据的一部分上进行训练,在该部分中,它学习了物种组合如何混合形成群落,以及组合如何与每个样本的已知特征相关。训练产生了一个可以预测新样本特征的模型。我们使用 BioMiCo 为三个连续采样数据集构建模型,并在不同时间点测试其预测准确性。第一个模型经过训练可预测身体部位(手、口和肠道)和个体人类宿主。它能够在不同时间点可靠地区分这些特征。第二个模型经过训练可预测阴道微生物组中的 Nugent 评分和个体人类宿主。我们发现,Nugent 评分正常和升高的女性具有不同的微生物组结构,这些结构随时间推移而保持不变,而评分升高的女性的结构则有所增加。第三个模型是为评估沿海细菌群落的季节性转变而构建的。该模型在高分辨率时间序列上的应用使我们能够跟踪群落演替的速度和时间,并准确预测已知的生态系统级事件。

结论

BioMiCo 为学习微生物群落的结构和基于微生物组合进行预测提供了一个框架。通过在精心挑选的特征(非生物或生物)上进行训练,BioMiCo 可用于理解和预测由数百种微生物物种组成的复杂群落之间的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df9b/4359585/6281c9679572/40168_2015_73_Fig1_HTML.jpg

相似文献

1
BioMiCo: a supervised Bayesian model for inference of microbial community structure.
Microbiome. 2015 Mar 10;3:8. doi: 10.1186/s40168-015-0073-x. eCollection 2015.
2
Bayesian Inference of Microbial Community Structure from Metagenomic Data Using BioMiCo.
Methods Mol Biol. 2018;1849:267-289. doi: 10.1007/978-1-4939-8728-3_17.
3
BiomeNet: a Bayesian model for inference of metabolic divergence among microbial communities.
PLoS Comput Biol. 2014 Nov 20;10(11):e1003918. doi: 10.1371/journal.pcbi.1003918. eCollection 2014 Nov.
4
Predicting microbiome compositions from species assemblages through deep learning.
Imeta. 2022 Mar;1(1). doi: 10.1002/imt2.3. Epub 2022 Mar 1.
5
Microbial community pattern detection in human body habitats via ensemble clustering framework.
BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S7. doi: 10.1186/1752-0509-8-S4-S7. Epub 2014 Dec 8.
6
Universality of human microbial dynamics.
Nature. 2016 Jun 9;534(7606):259-62. doi: 10.1038/nature18301.
7
Forensic Human Identification Using Skin Microbiomes.
Appl Environ Microbiol. 2017 Oct 31;83(22). doi: 10.1128/AEM.01672-17. Print 2017 Nov 15.
8
A Dirichlet-Multinomial Bayes Classifier for Disease Diagnosis with Microbial Compositions.
mSphere. 2017 Dec 13;2(6). doi: 10.1128/mSphereDirect.00536-17. eCollection 2017 Nov-Dec.
9
Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes.
PLoS One. 2015 Nov 4;10(11):e0135352. doi: 10.1371/journal.pone.0135352. eCollection 2015.
10
Bayesian Nonparametric Ordination for the Analysis of Microbial Communities.
J Am Stat Assoc. 2017;112(520):1430-1442. doi: 10.1080/01621459.2017.1288631. Epub 2017 Feb 28.

引用本文的文献

1
Microbes Under Climate Refugia: Equable Subcommunity Rank Dynamics in Large-River Deltaic Estuaries.
Ecol Evol. 2025 Aug 15;15(8):e72014. doi: 10.1002/ece3.72014. eCollection 2025 Aug.
3
Universal abundance fluctuations across microbial communities, tropical forests, and urban populations.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2215832120. doi: 10.1073/pnas.2215832120. Epub 2023 Oct 24.
4
Comparative Analysis of Core Microbiome Assignments: Implications for Ecological Synthesis.
mSystems. 2023 Feb 23;8(1):e0106622. doi: 10.1128/msystems.01066-22. Epub 2023 Feb 6.
5
Microbiome subcommunity learning with logistic-tree normal latent Dirichlet allocation.
Biometrics. 2023 Sep;79(3):2321-2332. doi: 10.1111/biom.13772. Epub 2022 Oct 28.
6
Novel Application of Survival Models for Predicting Microbial Community Transitions with Variable Selection for Environmental DNA.
Appl Environ Microbiol. 2022 Mar 22;88(6):e0214621. doi: 10.1128/AEM.02146-21. Epub 2022 Feb 9.
7
Dietary Therapy Reduces Pro-inflammatory Microbiome Features in Paediatric Crohn's Disease.
J Crohns Colitis. 2022 May 10;16(4):682-684. doi: 10.1093/ecco-jcc/jjab197.
8
Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization.
Biostatistics. 2022 Jul 18;23(3):891-909. doi: 10.1093/biostatistics/kxab002.
9
Hierarchical non-negative matrix factorization using clinical information for microbial communities.
BMC Genomics. 2021 Feb 4;22(1):104. doi: 10.1186/s12864-021-07401-y.

本文引用的文献

1
BiomeNet: a Bayesian model for inference of metabolic divergence among microbial communities.
PLoS Comput Biol. 2014 Nov 20;10(11):e1003918. doi: 10.1371/journal.pcbi.1003918. eCollection 2014 Nov.
2
Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton.
Environ Microbiol. 2015 Oct;17(10):3642-61. doi: 10.1111/1462-2920.12629. Epub 2015 Jan 30.
3
The treatment-naive microbiome in new-onset Crohn's disease.
Cell Host Microbe. 2014 Mar 12;15(3):382-392. doi: 10.1016/j.chom.2014.02.005.
4
Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals.
PLoS One. 2014 Mar 6;9(6):e90702. doi: 10.1371/journal.pone.0090702. eCollection 2014.
5
Role of the intestinal microbiota in resistance to colonization by Clostridium difficile.
Gastroenterology. 2014 May;146(6):1547-53. doi: 10.1053/j.gastro.2014.01.059. Epub 2014 Feb 4.
7
Vaginal microbiota and viral sexually transmitted diseases.
Ann Ig. 2013 Sep-Oct;25(5):443-56. doi: 10.7416/ai.2013.1946.
8
Interactions in the microbiome: communities of organisms and communities of genes.
FEMS Microbiol Rev. 2014 Jan;38(1):90-118. doi: 10.1111/1574-6976.12035. Epub 2013 Aug 28.
9
Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species.
PLoS One. 2013 Jul 16;8(7):e69621. doi: 10.1371/journal.pone.0069621. Print 2013.
10
The long-term stability of the human gut microbiota.
Science. 2013 Jul 5;341(6141):1237439. doi: 10.1126/science.1237439.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验