Shafiei Mahdi, Dunn Katherine A, Chipman Hugh, Gu Hong, Bielawski Joseph P
Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada.
Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
PLoS Comput Biol. 2014 Nov 20;10(11):e1003918. doi: 10.1371/journal.pcbi.1003918. eCollection 2014 Nov.
Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host's nutrient-based mechanism for bacterial partner selection.
宏基因组学产生了大量可赋予代谢功能的微生物序列。由于缺乏合适的统计框架,利用此类数据推断群落水平的代谢差异受到了阻碍。在此,我们描述了一种名为BiomeNet(代谢网络的贝叶斯推断)的新型分层贝叶斯模型,用于推断微生物群落中代谢子网络的差异流行情况。为了推断群落水平代谢相互作用的结构,BiomeNet将混合成员建模框架应用于酶丰度信息。基本思想是模型的混合成分(代谢反应、子网络和网络)在所有组(微生物组样本)中共享,但混合比例因组而异。通过这个框架,模型可以捕捉数据中的嵌套结构。BiomeNet的独特之处在于将每个宏基因组样本建模为复杂代谢系统(代谢系统)的混合物。代谢系统由紧密连接的代谢子网络的混合物组成。BiomeNet与其他无监督方法的不同之处在于,它允许研究人员通过在数据中发现的代谢模式来区分样本组,并提供一个解释这些模式的框架。我们描述了一种用于在BiomeNet下推断混合权重的塌缩吉布斯采样器,并使用模拟来验证推断算法。将BiomeNet应用于人类肠道宏基因组,发现一种代谢系统在炎症性肠病(IBD)患者中更为普遍。基于该代谢系统的鉴别性子网络,我们推断该群落可能与人类肠道上皮密切相关,对饮食干预有抗性,并干扰人类对与IBD相关的抗氧化剂的摄取。由于这种代谢系统具有更强的利用宿主相关聚糖的能力,我们推测与IBD相关的群落可能源于能够规避宿主基于营养的细菌伙伴选择机制的细菌的机会性生长。