Suppr超能文献

密封微型生态系统中模拟行星土壤的生存能力和生命支持。

Survivability and life support in sealed mini-ecosystems with simulated planetary soils.

机构信息

Okayama Hakuryo High School, Akaiwa, 709-0715, Japan.

Department of Computational and Systems Biology, Medical Research Laboratory, Institute of Science Tokyo, Tokyo, 113-0034, Japan.

出版信息

Sci Rep. 2024 Nov 1;14(1):26322. doi: 10.1038/s41598-024-75328-x.

Abstract

Establishing a sustainable life-support system for space exploration is a formidable challenge due to the vast distances, high costs, and environmental differences from Earth. Building upon the lessons from the Biosphere 2 experiment, we introduce the novel "Ecosphere" and "Biosealed" systems, self-sustaining ecosystems within customizable, enclosed containers. These systems incorporate terrestrial ecosystems and groundwater layers, offering a potential model for transplanting Earth-like biomes to extraterrestrial environments. Over 4 years, we conducted rigorous experiments and analyses to understand the dynamics of these enclosed ecosystems. We successfully mitigated moisture deficiency, a major obstacle to plant growth, by incorporating groundwater layers. Additionally, we quantified microbial communities proliferating in specific soils, including simulated lunar and Ryugu asteroid regolith, enhance plant cultivation in space environments. Metagenomic analysis of these simulated space soils revealed diverse microbial populations and their crucial role in plant growth and ecosystem stability. Notably, we identified symbiotic relationships between plants and Cyanobacteria, enhancing oxygen production, and demonstrated the potential of LED lighting as an alternative light source for plant cultivation in sun-limited space missions. We also confirmed the survival of fruit flies within these systems, relying on plant-produced oxygen and photosynthetic bacteria. Our research provides a comprehensive framework for developing future space life-support systems. The novelty of our work lies in the unique design of our enclosed ecosystems, incorporating groundwater layers and simulated extraterrestrial soils, and the detailed analysis of microbial communities within these systems. These findings offer valuable insights into the challenges and potential solutions for establishing sustainable human habitats in space, including the importance of microbial management and potential health concerns related to microbial exposure.

摘要

建立可持续的太空探索生命支持系统是一项艰巨的挑战,因为其涉及到与地球相差甚远的巨大距离、高昂成本和环境差异。在生物圈 2 号实验的基础上,我们引入了新颖的“生态球”和“生物密封”系统,这是可定制的封闭容器内的自我维持生态系统。这些系统整合了陆地生态系统和地下水层,为将类似地球的生物群落移植到外星环境提供了潜在的模型。在 4 年多的时间里,我们进行了严格的实验和分析,以了解这些封闭生态系统的动态。我们通过引入地下水层成功缓解了植物生长的主要障碍——水分不足。此外,我们量化了在特定土壤中繁殖的微生物群落,包括模拟的月球和龙宫小行星风化层,以增强太空环境中的植物种植。对这些模拟太空土壤的宏基因组分析揭示了多样化的微生物种群及其在植物生长和生态系统稳定中的关键作用。值得注意的是,我们发现了植物和蓝藻之间的共生关系,增强了氧气的产生,并展示了 LED 照明作为在阳光有限的太空任务中进行植物种植的替代光源的潜力。我们还确认了这些系统内果蝇的存活,它们依靠植物产生的氧气和光合细菌生存。我们的研究为开发未来的太空生命支持系统提供了全面的框架。我们工作的新颖之处在于我们封闭生态系统的独特设计,包括地下水层和模拟的外星土壤,以及对这些系统内微生物群落的详细分析。这些发现为在太空中建立可持续的人类栖息地提供了有价值的见解,包括微生物管理的重要性和与微生物暴露相关的潜在健康问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c1a/11530624/3d3edbb684b5/41598_2024_75328_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验