Suppr超能文献

纳米囊泡的曲率调节脂质膜软化

Curvature-Regulated Lipid Membrane Softening of Nano-Vesicles.

作者信息

Chng Choon-Peng, Sadovsky Yoel, Hsia K Jimmy, Huang Changjin

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.

Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213.

出版信息

Extreme Mech Lett. 2021 Feb;43. doi: 10.1016/j.eml.2021.101174. Epub 2021 Jan 9.

Abstract

The physico-mechanical properties of nanoscale lipid vesicles (e.g., natural nano-vesicles and artificial nano-liposomes) dictate their interaction with biological systems. Understanding the interplay between vesicle size and stiffness is critical to both the understanding of the biological functions of natural nano-vesicles and the optimization of nano-vesicle-based diagnostics and therapeutics. It has been predicted that, when vesicle size is comparable to its membrane thickness, the effective bending stiffness of the vesicle increases dramatically due to both the entropic effect as a result of reduced thermal undulation and the nonlinear curvature elasticity effect. Through systematic molecular dynamics simulations, we show that the vesicle membrane thins and softens with the decrease in vesicle size, which effectively counteracts the stiffening effects as already mentioned. Our simulations indicate that the softening of nano-vesicles results from a change in the bilayer's interior structure - a decrease in lipid packing order - as the membrane curvature increases. Our work thus leads to a more complete physical framework to understand the physico-mechanical properties of nanoscale lipid vesicles, paving the way to further advances in the biophysics of nano-vesicles and their biomedical applications.

摘要

纳米级脂质囊泡(如天然纳米囊泡和人工纳米脂质体)的物理机械性能决定了它们与生物系统的相互作用。了解囊泡大小与硬度之间的相互作用对于理解天然纳米囊泡的生物学功能以及优化基于纳米囊泡的诊断和治疗方法至关重要。据预测,当囊泡大小与其膜厚度相当时,由于热波动减少导致的熵效应和非线性曲率弹性效应,囊泡的有效弯曲刚度会急剧增加。通过系统的分子动力学模拟,我们表明囊泡膜随着囊泡大小的减小而变薄和变软,这有效地抵消了上述的硬化效应。我们的模拟表明,纳米囊泡的软化是由于膜曲率增加时双层内部结构的变化——脂质堆积顺序的降低。我们的工作因此导致了一个更完整的物理框架来理解纳米级脂质囊泡的物理机械性能,为纳米囊泡生物物理学及其生物医学应用的进一步发展铺平了道路。

相似文献

1
Curvature-Regulated Lipid Membrane Softening of Nano-Vesicles.
Extreme Mech Lett. 2021 Feb;43. doi: 10.1016/j.eml.2021.101174. Epub 2021 Jan 9.
3
Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties.
J Chem Phys. 2014 Apr 14;140(14):144908. doi: 10.1063/1.4870478.
4
A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction.
Eur Biophys J. 2004 Nov;33(7):565-71. doi: 10.1007/s00249-004-0404-5. Epub 2004 Apr 17.
7
Coupling of bending and stretching deformations in vesicle membranes.
Adv Colloid Interface Sci. 2014 Jun;208:14-24. doi: 10.1016/j.cis.2014.02.008. Epub 2014 Feb 18.
9
Stiffness of Fluid and Gel Phase Lipid Nanovesicles: Weighting the Contributions of Membrane Bending Modulus and Luminal Pressurization.
Langmuir. 2021 Oct 19;37(41):12027-12037. doi: 10.1021/acs.langmuir.1c01660. Epub 2021 Oct 5.
10
Vesicle shapes from molecular dynamics simulations.
J Phys Chem B. 2006 Nov 16;110(45):22780-5. doi: 10.1021/jp064888a.

引用本文的文献

2
Mechanical property estimation of sarcoma-relevant extracellular vesicles using transmission electron microscopy.
J Extracell Biol. 2024 Jul 4;3(7):e158. doi: 10.1002/jex2.158. eCollection 2024 Jul.
3
Unraveling How Antimicrobial Lipid Mixtures Disrupt Virus-Mimicking Lipid Vesicles: A QCM-D Study.
Biomimetics (Basel). 2024 Jan 24;9(2):67. doi: 10.3390/biomimetics9020067.
4
Understanding the Mechanical Properties of Ultradeformable Liposomes Using Molecular Dynamics Simulations.
J Phys Chem B. 2023 Nov 9;127(44):9496-9512. doi: 10.1021/acs.jpcb.3c04386. Epub 2023 Oct 25.
5
Molecular Dynamics Simulations of Curved Lipid Membranes.
Int J Mol Sci. 2022 Jul 22;23(15):8098. doi: 10.3390/ijms23158098.
8
Site-Specific Peroxidation Modulates Lipid Bilayer Mechanics.
Extreme Mech Lett. 2021 Jan;42. doi: 10.1016/j.eml.2020.101148. Epub 2020 Dec 14.

本文引用的文献

2
The biology of extracellular vesicles: The known unknowns.
PLoS Biol. 2019 Jul 18;17(7):e3000363. doi: 10.1371/journal.pbio.3000363. eCollection 2019 Jul.
3
Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery.
ACS Nano. 2019 Jul 23;13(7):7410-7424. doi: 10.1021/acsnano.9b03924. Epub 2019 Jul 11.
4
A New Computational Method for Membrane Compressibility: Bilayer Mechanical Thickness Revisited.
Biophys J. 2019 Feb 5;116(3):487-502. doi: 10.1016/j.bpj.2018.12.016. Epub 2019 Jan 3.
6
Control of Liposomal Penetration into Three-Dimensional Multicellular Tumor Spheroids by Modulating Liposomal Membrane Rigidity.
Mol Pharm. 2017 Jun 5;14(6):2158-2165. doi: 10.1021/acs.molpharmaceut.7b00051. Epub 2017 Apr 27.
7
Engineering exosomes as refined biological nanoplatforms for drug delivery.
Acta Pharmacol Sin. 2017 Jun;38(6):754-763. doi: 10.1038/aps.2017.12. Epub 2017 Apr 10.
8
Formation and size distribution of self-assembled vesicles.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2910-2915. doi: 10.1073/pnas.1702065114. Epub 2017 Mar 6.
9
Experimental Estimation of Membrane Tension Induced by Osmotic Pressure.
Biophys J. 2016 Nov 15;111(10):2190-2201. doi: 10.1016/j.bpj.2016.09.043.
10
Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity.
Placenta. 2016 Nov;47:86-95. doi: 10.1016/j.placenta.2016.09.008. Epub 2016 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验