Suppr超能文献

相似文献

1
Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity.
Biomacromolecules. 2021 Mar 8;22(3):1115-1126. doi: 10.1021/acs.biomac.0c01476. Epub 2021 Feb 5.
2
Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
Acta Biomater. 2024 Mar 15;177:203-215. doi: 10.1016/j.actbio.2024.02.010. Epub 2024 Feb 12.
3
Dual Functionalization of Gelatin for Orthogonal and Dynamic Hydrogel Cross-Linking.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4196-4208. doi: 10.1021/acsbiomaterials.1c00709. Epub 2021 Aug 9.
4
Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells.
Biomacromolecules. 2022 Oct 10;23(10):4141-4152. doi: 10.1021/acs.biomac.2c00585. Epub 2022 Sep 8.
5
Modular Cross-Linking of Gelatin-Based Thiol-Norbornene Hydrogels for 3D Culture of Hepatocellular Carcinoma Cells.
ACS Biomater Sci Eng. 2015 Dec 14;1(12):1314-1323. doi: 10.1021/acsbiomaterials.5b00436. Epub 2015 Oct 29.
6
Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation.
Biomater Sci. 2014 Aug 30;2(8):1063-1072. doi: 10.1039/c4bm00070f. Epub 2014 Apr 23.
7
Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications.
Macromol Biosci. 2024 Feb;24(2):e2300371. doi: 10.1002/mabi.202300371. Epub 2023 Oct 6.
8
Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels.
ACS Biomater Sci Eng. 2019 Mar 11;5(3):1247-1256. doi: 10.1021/acsbiomaterials.8b01607. Epub 2019 Jan 25.
9
Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions.
Acta Biomater. 2021 Aug;130:161-171. doi: 10.1016/j.actbio.2021.05.054. Epub 2021 Jun 1.
10
Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
J Biomed Mater Res A. 2016 Oct;104(10):2401-11. doi: 10.1002/jbm.a.35779. Epub 2016 May 30.

引用本文的文献

1
2
3
Fast-Relaxing Hydrogels Promote Pancreatic Adenocarcinoma Cell Aggressiveness through Integrin β1 Signaling.
Biomacromolecules. 2025 Feb 10;26(2):1098-1110. doi: 10.1021/acs.biomac.4c01441. Epub 2025 Jan 22.
4
Fast-relaxing hydrogels with reversibly tunable mechanics for dynamic cancer cell culture.
Biomater Adv. 2024 May;159:213829. doi: 10.1016/j.bioadv.2024.213829. Epub 2024 Mar 15.
5
Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies.
Regen Biomater. 2024 Feb 20;11:rbae016. doi: 10.1093/rb/rbae016. eCollection 2024.
6
Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
Acta Biomater. 2024 Mar 15;177:203-215. doi: 10.1016/j.actbio.2024.02.010. Epub 2024 Feb 12.
7
Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair.
Pharmaceutics. 2023 Sep 29;15(10):2405. doi: 10.3390/pharmaceutics15102405.
8
Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications.
Macromol Biosci. 2024 Feb;24(2):e2300371. doi: 10.1002/mabi.202300371. Epub 2023 Oct 6.
9
Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization.
Macromol Biosci. 2023 Dec;23(12):e2300213. doi: 10.1002/mabi.202300213. Epub 2023 Aug 9.
10
Osteocytes: New Kids on the Block for Cancer in Bone Therapy.
Cancers (Basel). 2023 May 7;15(9):2645. doi: 10.3390/cancers15092645.

本文引用的文献

1
Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic pH.
ACS Macro Lett. 2015 Feb 17;4(2):220-224. doi: 10.1021/acsmacrolett.5b00018. Epub 2015 Jan 26.
2
Modular Cross-Linking of Gelatin-Based Thiol-Norbornene Hydrogels for 3D Culture of Hepatocellular Carcinoma Cells.
ACS Biomater Sci Eng. 2015 Dec 14;1(12):1314-1323. doi: 10.1021/acsbiomaterials.5b00436. Epub 2015 Oct 29.
3
Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels.
ACS Biomater Sci Eng. 2019 Mar 11;5(3):1247-1256. doi: 10.1021/acsbiomaterials.8b01607. Epub 2019 Jan 25.
4
Self-healing boronic acid-based hydrogels for 3D co-cultures.
ACS Macro Lett. 2018 Sep 18;7(9):1105-1110. doi: 10.1021/acsmacrolett.8b00462. Epub 2018 Aug 31.
5
IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel.
ACS Appl Bio Mater. 2020 Mar 16;3(3):1666-1680. doi: 10.1021/acsabm.9b01227. Epub 2020 Feb 19.
6
A Bioprinted In Vitro Model for Osteoblast to Osteocyte Transformation by Changing Mechanical Properties of the ECM.
Adv Biosyst. 2019 Oct;3(10):e1900126. doi: 10.1002/adbi.201900126. Epub 2019 Aug 21.
7
Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation.
Biomater Sci. 2014 Aug 30;2(8):1063-1072. doi: 10.1039/c4bm00070f. Epub 2014 Apr 23.
8
Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications.
Tissue Eng Part B Rev. 2020 Apr;26(2):164-180. doi: 10.1089/ten.TEB.2019.0256. Epub 2020 Feb 4.
9
Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells.
Front Bioeng Biotechnol. 2019 Oct 23;7:288. doi: 10.3389/fbioe.2019.00288. eCollection 2019.
10
Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis.
Bone Res. 2019 Nov 5;7:34. doi: 10.1038/s41413-019-0070-y. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验