Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.
Biomacromolecules. 2021 Mar 8;22(3):1115-1126. doi: 10.1021/acs.biomac.0c01476. Epub 2021 Feb 5.
Bone is an attractive site for metastatic cancer cells and has been considered as "soil" for promoting tumor growth. However, accumulating evidence suggests that some bone cells (e.g., osteocytes) can actually suppress cancer cell migration and invasion direct cell-cell contact and/or through cytokine secretion. Toward designing a biomimetic niche for supporting 3D osteocyte culture, we present here a gelatin-based hydrogel system with independently tunable matrix stiffness and viscoelasticity. In particular, we synthesized a bifunctional macromer, gelatin-norbornene-boronic acid (i.e., GelNB-BA), for covalent cross-linking with multifunctional thiol linkers [e.g., four-arm poly(ethylene glycol)-thiol or PEG4SH] to form thiol-NB hydrogels. The immobilized BA moieties in the hydrogel readily formed reversible boronate ester bonds with 1,3-diols on physically entrapped poly(vinyl alcohol) (PVA). Adjusting the compositions of GelNB-BA, PEG4SH, and PVA afforded hydrogels with independently tunable elasticity and viscoelasticity. With this new dynamic hydrogel platform, we investigated matrix mechanics-induced growth and cytokine secretion of encapsulated MLO-A5 pre-osteocytes. We discovered that more compliant or viscoelastic gels promoted A5 cell growth. On the other hand, cells encapsulated in stiffer gels secreted higher amounts of pro-inflammatory cytokines and chemokines. Finally, conditioned media (CM) collected from the encapsulated MLO-A5 cells (i.e., A5-CM) strongly inhibited breast cancer cell proliferation, invasion, and expression of tumor-activating genes. This new biomimetic hydrogel platform not only serves as a versatile matrix for investigating mechano-sensing in osteocytes but also provides a means to produce powerful anti-tumor CM.
骨骼是转移性癌细胞的理想部位,被认为是促进肿瘤生长的“土壤”。然而,越来越多的证据表明,一些骨细胞(如成骨细胞)实际上可以通过细胞间直接接触和/或通过细胞因子分泌来抑制癌细胞的迁移和侵袭。为了设计支持 3D 成骨细胞培养的仿生小生境,我们在此提出了一种基于明胶的水凝胶系统,该系统具有可独立调节的基质硬度和粘弹性。特别是,我们合成了一种双功能大分子单体,即明胶-降冰片烯-硼酸(即 GelNB-BA),用于与多功能硫醇接头(例如四臂聚乙二醇-硫醇或 PEG4SH)进行共价交联,形成硫醇-NB 水凝胶。水凝胶中固定的 BA 部分可与物理包埋的聚乙烯醇(PVA)上的 1,3-二醇迅速形成可逆硼酸酯键。调节 GelNB-BA、PEG4SH 和 PVA 的组成,可以获得具有可独立调节的弹性和粘弹性的水凝胶。利用这个新的动态水凝胶平台,我们研究了基质力学诱导的包封的 MLO-A5 前成骨细胞的生长和细胞因子分泌。我们发现,更顺应或粘弹性的凝胶促进了 A5 细胞的生长。另一方面,在较硬的凝胶中包封的细胞分泌了更高量的促炎细胞因子和趋化因子。最后,从包封的 MLO-A5 细胞(即 A5-CM)收集的条件培养基强烈抑制了乳腺癌细胞的增殖、侵袭和肿瘤激活基因的表达。这个新的仿生水凝胶平台不仅可用作研究成骨细胞中机械感应的多功能基质,还提供了一种产生强大抗肿瘤 CM 的方法。