Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
Acta Biomater. 2021 Aug;130:161-171. doi: 10.1016/j.actbio.2021.05.054. Epub 2021 Jun 1.
Hydrogels with dynamically tunable crosslinking are invaluable for directing stem cell fate and mimicking a stiffening matrix during fibrosis or tumor development. The increases in matrix stiffness during tissue development are often accompanied by the accumulation of extracellular matrices (e.g., collagen, hyaluronic acid (HA)), a phenomenon that has received little attention in the development of dynamic hydrogels. In this contribution, we present a gelatin-based cell-laden hydrogel system capable of being dynamically stiffened while accumulating HA, a key glycosaminoglycans (GAG) increasingly deposited by stromal cells during tumor progression. Central to this strategy is the synthesis of a dually-modified gelatin macromer - gelatin-norbornene-carbohydrazide (GelNB-CH), which is susceptible to both thiol-norbornene photopolymerization and hydrazone click chemistry. We demonstrate that the crosslinking density of cell-laden thiol-norbornene hydrogels can be dynamically tuned via simple incubation with aldehyde-bearing macromers (e.g., oxidized dextran (oDex) or oHA). The GelNB-CH hydrogel system is highly cytocompatible, as demonstrated by in situ encapsulation of pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF). This unique dynamic stiffening scheme provides a platform to study tandem accumulation of HA and elevation in matrix stiffness in the pancreatic tumor microenvironment. STATEMENT OF SIGNIFICANCE: Hydrogels permitting on-demand and secondary crosslinking are ideal for mimicking a stiffening tumor microenvironment (TME). However, none of the current dynamic hydrogels account for both stiffening and accumulation of hyaluronic acid (HA), a major extracellular matrix component increasingly deposited in tumor stromal tissues, including pancreatic ductal adenocarcinoma (PDAC). The current work addresses this gap by developing a dynamic hydrogel system capable of simultaneously increasing stiffness and HA accumulation. This is achieved by a new gelatin macromer permitting sequential thiol-norbornene (for primary network crosslinking) and hydrazone click chemistry (for bioinert or biomimetic stiffening with oxidized dextran (oDex) or oHA, respectively). The results of this study provide new insights into how dynamically changing physicochemical matrix properties guide cancer cell fate processes.
具有动态可调交联的水凝胶对于指导干细胞命运和模拟纤维化或肿瘤发展过程中基质的变硬非常有价值。在组织发育过程中,基质硬度的增加通常伴随着细胞外基质(例如胶原蛋白、透明质酸(HA))的积累,而这一现象在动态水凝胶的开发中很少受到关注。在本研究中,我们提出了一种基于明胶的细胞负载水凝胶系统,该系统能够在积累 HA 的同时进行动态变硬,HA 是肿瘤进展过程中基质细胞不断积累的关键糖胺聚糖(GAG)之一。该策略的核心是合成一种双重修饰的明胶大分子单体 - 明胶-降冰片烯-碳酰肼(GelNB-CH),它既易受硫醇-降冰片烯光聚合又易受腙点击化学的影响。我们证明,通过简单地用含有醛的大分子单体(例如氧化葡聚糖(oDex)或 oHA)孵育,细胞负载的硫醇-降冰片烯水凝胶的交联密度可以动态调节。GelNB-CH 水凝胶系统具有高度的细胞相容性,这一点通过原位封装胰腺癌细胞(PCC)和癌症相关成纤维细胞(CAF)得到了证明。这种独特的动态变硬方案为研究胰腺肿瘤微环境中 HA 的串联积累和基质硬度的升高提供了一个平台。
允许按需和二次交联的水凝胶是模拟变硬的肿瘤微环境(TME)的理想选择。然而,目前没有任何一种动态水凝胶同时考虑到了硬度的增加和透明质酸(HA)的积累,HA 是肿瘤基质组织中越来越多沉积的主要细胞外基质成分,包括胰腺导管腺癌(PDAC)。目前的工作通过开发一种能够同时增加硬度和 HA 积累的动态水凝胶系统来解决这一差距。这是通过一种新的明胶大分子单体实现的,该单体允许依次进行硫醇-降冰片烯(用于初级网络交联)和腙点击化学(分别用于用氧化葡聚糖(oDex)或 oHA 进行生物惰性或仿生交联)。本研究的结果为动态变化的物理化学基质特性如何指导癌细胞命运过程提供了新的见解。