Suppr超能文献

主动脉形态和血液动力学的合成数据库:克服医学成像数据的可用性。

Synthetic Database of Aortic Morphometry and Hemodynamics: Overcoming Medical Imaging Data Availability.

出版信息

IEEE Trans Med Imaging. 2021 May;40(5):1438-1449. doi: 10.1109/TMI.2021.3057496. Epub 2021 Apr 30.

Abstract

Modeling of hemodynamics and artificial intelligence have great potential to support clinical diagnosis and decision making. While hemodynamics modeling is extremely time- and resource-consuming, machine learning (ML) typically requires large training data that are often unavailable. The aim of this study was to develop and evaluate a novel methodology generating a large database of synthetic cases with characteristics similar to clinical cohorts of patients with coarctation of the aorta (CoA), a congenital heart disease associated with abnormal hemodynamics. Synthetic data allows use of ML approaches to investigate aortic morphometric pathology and its influence on hemodynamics. Magnetic resonance imaging data (154 patients as well as of healthy subjects) of aortic shape and flow were used to statistically characterize the clinical cohort. The methodology generating the synthetic cohort combined statistical shape modeling of aortic morphometry and aorta inlet flow fields and numerical flow simulations. Hierarchical clustering and non-linear regression analysis were successfully used to investigate the relationship between morphometry and hemodynamics and to demonstrate credibility of the synthetic cohort by comparison with a clinical cohort. A database of 2652 synthetic cases with realistic shape and hemodynamic properties was generated. Three shape clusters and respective differences in hemodynamics were identified. The novel model predicts the CoA pressure gradient with a root mean square error of 4.6 mmHg. In conclusion, synthetic data for anatomy and hemodynamics is a suitable means to address the lack of large datasets and provide a powerful basis for ML to gain new insights into cardiovascular diseases.

摘要

血流动力学建模和人工智能在支持临床诊断和决策方面具有巨大潜力。虽然血流动力学建模非常耗时耗资源,但机器学习 (ML) 通常需要大量的训练数据,而这些数据通常是不可用的。本研究旨在开发和评估一种新的方法,该方法可生成具有类似于主动脉缩窄 (CoA) 患者临床队列特征的大量合成病例数据库,CoA 是一种与异常血流动力学相关的先天性心脏病。合成数据可用于使用 ML 方法研究主动脉形态病理学及其对血流动力学的影响。使用磁共振成像数据(154 名患者和健康受试者的)对主动脉形状和流动进行统计特征描述,以对临床队列进行统计描述。生成合成队列的方法结合了主动脉形态学的统计形状建模和主动脉入口流场以及数值流动模拟。成功地使用层次聚类和非线性回归分析来研究形态学和血流动力学之间的关系,并通过与临床队列进行比较来证明合成队列的可信度。生成了具有真实形状和血流动力学特性的 2652 个合成病例的数据库。确定了三个形状聚类和各自的血流动力学差异。该新型模型预测 CoA 压力梯度的均方根误差为 4.6mmHg。总之,解剖学和血流动力学的合成数据是解决大数据集缺乏的一种合适手段,并为 ML 提供了一个强大的基础,以获得对心血管疾病的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验