Suppr超能文献

基于深度学习的主动脉缩窄血流动力学评估:双向递归神经网络与卷积神经网络的比较

Deep learning based assessment of hemodynamics in the coarctation of the aorta: comparison of bidirectional recurrent and convolutional neural networks.

作者信息

Versnjak Jakob, Yevtushenko Pavlo, Kuehne Titus, Bruening Jan, Goubergrits Leonid

机构信息

Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany.

出版信息

Front Physiol. 2024 Feb 21;15:1288339. doi: 10.3389/fphys.2024.1288339. eCollection 2024.

Abstract

The utilization of numerical methods, such as computational fluid dynamics (CFD), has been widely established for modeling patient-specific hemodynamics based on medical imaging data. Hemodynamics assessment plays a crucial role in treatment decisions for the coarctation of the aorta (CoA), a congenital heart disease, with the pressure drop (PD) being a crucial biomarker for CoA treatment decisions. However, implementing CFD methods in the clinical environment remains challenging due to their computational cost and the requirement for expert knowledge. This study proposes a deep learning approach to mitigate the computational need and produce fast results. Building upon a previous proof-of-concept study, we compared the effects of two different artificial neural network (ANN) architectures trained on data with different dimensionalities, both capable of predicting hemodynamic parameters in CoA patients: a one-dimensional bidirectional recurrent neural network (1D BRNN) and a three-dimensional convolutional neural network (3D CNN). The performance was evaluated by median point-wise root mean square error (RMSE) for pressures along the centerline in 18 test cases, which were not included in a training cohort. We found that the 3D CNN (median RMSE of 3.23 mmHg) outperforms the 1D BRNN (median RMSE of 4.25 mmHg). In contrast, the 1D BRNN is more precise in PD prediction, with a lower standard deviation of the error (±7.03 mmHg) compared to the 3D CNN (±8.91 mmHg). The differences between both ANNs are not statistically significant, suggesting that compressing the 3D aorta hemodynamics into a 1D centerline representation does not result in the loss of valuable information when training ANN models. Additionally, we evaluated the utility of the synthetic geometries of the aortas with CoA generated by using a statistical shape model (SSM), as well as the impact of aortic arch geometry (gothic arch shape) on the model's training. The results show that incorporating a synthetic cohort obtained through the SSM of the clinical cohort does not significantly increase the model's accuracy, indicating that the synthetic cohort generation might be oversimplified. Furthermore, our study reveals that selecting training cases based on aortic arch shape (gothic non-gothic) does not improve ANN performance for test cases sharing the same shape.

摘要

数值方法的应用,如计算流体动力学(CFD),已广泛用于基于医学影像数据对特定患者的血流动力学进行建模。血流动力学评估在主动脉缩窄(CoA)这一先天性心脏病的治疗决策中起着关键作用,压力降(PD)是CoA治疗决策的关键生物标志物。然而,由于计算成本和对专业知识的要求,在临床环境中实施CFD方法仍然具有挑战性。本研究提出一种深度学习方法,以减轻计算需求并快速得出结果。基于先前的概念验证研究,我们比较了在不同维度数据上训练的两种不同人工神经网络(ANN)架构的效果,这两种架构都能够预测CoA患者的血流动力学参数:一维双向递归神经网络(1D BRNN)和三维卷积神经网络(3D CNN)。通过对18个测试病例(未包含在训练队列中)沿中心线的压力进行逐点均方根误差(RMSE)中位数评估性能。我们发现3D CNN(中位数RMSE为3.23 mmHg)优于1D BRNN(中位数RMSE为4.25 mmHg)。相比之下,1D BRNN在PD预测方面更精确,与3D CNN(±8.91 mmHg)相比,误差标准差更低(±7.03 mmHg)。两种ANN之间的差异无统计学意义,这表明在训练ANN模型时,将三维主动脉血流动力学压缩为一维中心线表示不会导致有价值信息的丢失。此外,我们评估了使用统计形状模型(SSM)生成的CoA主动脉合成几何形状的效用,以及主动脉弓几何形状(哥特式弓形状)对模型训练的影响。结果表明,纳入通过临床队列的SSM获得的合成队列不会显著提高模型的准确性,这表明合成队列生成可能过于简化。此外,我们的研究表明,基于主动脉弓形状(哥特式与非哥特式)选择训练病例并不能提高具有相同形状的测试病例的ANN性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25e/10916009/b589dd25c617/fphys-15-1288339-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验