IEEE Trans Vis Comput Graph. 2021 Jun;27(6):2908-2922. doi: 10.1109/TVCG.2021.3057519. Epub 2021 May 12.
The identification of interesting patterns and relationships is essential to exploratory data analysis. This becomes increasingly difficult in high dimensional datasets. While dimensionality reduction techniques can be utilized to reduce the analysis space, these may unintentionally bury key dimensions within a larger grouping and obfuscate meaningful patterns. With this work we introduce DimLift, a novel visual analysis method for creating and interacting with dimensional bundles. Generated through an iterative dimensionality reduction or user-driven approach, dimensional bundles are expressive groups of dimensions that contribute similarly to the variance of a dataset. Interactive exploration and reconstruction methods via a layered parallel coordinates plot allow users to lift interesting and subtle relationships to the surface, even in complex scenarios of missing and mixed data types. We exemplify the power of this technique in an expert case study on clinical cohort data alongside two additional case examples from nutrition and ecology.
识别有趣的模式和关系对于探索性数据分析至关重要。在高维数据集中,这变得越来越困难。虽然可以利用降维技术来减少分析空间,但这可能会无意中将关键维度埋没在更大的分组中,并掩盖有意义的模式。在这项工作中,我们引入了 DimLift,这是一种用于创建和交互的新颖的可视化分析方法,用于创建和交互的维度捆绑。通过迭代降维或用户驱动的方法生成,维度捆绑是对数据集方差有相似贡献的维度的有表现力的分组。通过分层平行坐标图进行交互式探索和重构方法,使用户能够将有趣和微妙的关系提升到表面,即使在复杂的缺失和混合数据类型场景中也是如此。我们在临床队列数据的专家案例研究中展示了该技术的强大功能,同时还展示了来自营养和生态学的另外两个案例示例。