Suppr超能文献

降钙素原、C 反应蛋白、中性粒细胞明胶酶相关脂质运载蛋白、抵抗素和 APTT 波形在危重症儿童严重细菌感染的早期诊断和预后预测中的作用。

Procalcitonin, C-reactive protein, neutrophil gelatinase-associated lipocalin, resistin and the APTT waveform for the early diagnosis of serious bacterial infection and prediction of outcome in critically ill children.

机构信息

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.

Malawi-Liverpool-Wellcome Trust Clinical Research Facility, Blantyre, Malawi.

出版信息

PLoS One. 2021 Feb 5;16(2):e0246027. doi: 10.1371/journal.pone.0246027. eCollection 2021.

Abstract

OBJECTIVE

Bacterial Infections remains a leading cause of death in the Paediatric Intensive Care Unit (PICU). In this era of rising antimicrobial resistance, new tools are needed to guide antimicrobial use. The aim of this study was to investigate the accuracy of procalcitonin (PCT), neutrophil gelatinase-associated lipocalin (NGAL), resistin, activated partial thromboplastin time (aPTT) waveform and C-reactive protein (CRP) for the diagnosis of serious bacterial infection (SBI) in children on admission to PICU and their use as prognostic indicators.

SETTING

A regional PICU in the United Kingdom.

PATIENTS

Consecutive PICU admissions between October 2010 and June 2012.

MEASUREMENTS

Blood samples were collected daily for biomarker measurement. The primary outcome measure was performance of study biomarkers for diagnosis of SBI on admission to PICU based on clinical, radiological and microbiological criteria. Secondary outcomes included durations of PICU stay and invasive ventilation and 28-day mortality. Patients were followed up to day 28 post-admission.

MAIN RESULTS

A total of 657 patients were included in the study. 92 patients (14%) fulfilled criteria for SBI. 28-day mortality was 2.6% (17/657), but 8.7% (8/92) for patients with SBI. The combination of PCT, resistin, plasma NGAL and CRP resulted in the greatest net reclassification improvement compared to CRP alone (0.69, p<0.005) with 10.5% reduction in correct classification of patients with SBI (p 0.52) but a 78% improvement in correct classification of patients without events (p <0.005). A statistical model of prolonged duration of PICU stay found log-transformed maximum values of biomarkers performed better than first recorded biomarkers. The final model included maximum values of CRP, plasma NGAL, lymphocyte and platelet count (AUC 79%, 95% CI 73.7% to 84.2%). Longitudinal profiles of biomarkers showed PCT levels to decrease most rapidly following admission SBI.

CONCLUSION

Combinations of biomarkers, including PCT, may improve accurate and timely identification of SBI on admission to PICU.

摘要

目的

细菌性感染仍然是儿科重症监护病房(PICU)患儿死亡的主要原因。在这个抗生素耐药性日益上升的时代,我们需要新的工具来指导抗生素的使用。本研究旨在探讨降钙素原(PCT)、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、抵抗素、活化部分凝血活酶时间(aPTT)波形和 C 反应蛋白(CRP)在儿童 PICU 入院时诊断严重细菌感染(SBI)的准确性,并将其作为预后指标。

地点

英国一家地区性 PICU。

患者

2010 年 10 月至 2012 年 6 月连续 PICU 入院患儿。

测量方法

每天采集血液样本进行生物标志物检测。主要观察指标是根据临床、影像学和微生物学标准,评估研究生物标志物在 PICU 入院时诊断 SBI 的性能。次要结局包括 PICU 住院时间、有创通气时间和 28 天死亡率。患者在入院后 28 天内进行随访。

主要结果

本研究共纳入 657 例患儿。92 例(14%)患儿符合 SBI 标准。28 天死亡率为 2.6%(17/657),而 SBI 患儿为 8.7%(8/92)。与 CRP 相比,PCT、抵抗素、血浆 NGAL 和 CRP 的组合导致正确分类 SBI 患者的净再分类改善最大(0.69,p<0.005),SBI 患者的正确分类减少 10.5%(p<0.005),但无事件患者的正确分类提高 78%(p<0.005)。一个关于 PICU 住院时间延长的统计模型发现,生物标志物的对数转换最大值比首次记录的生物标志物表现更好。最终模型包括 CRP、血浆 NGAL、淋巴细胞和血小板计数的最大值(AUC 为 79%,95%CI 为 73.7%至 84.2%)。生物标志物的纵向曲线显示,在 SBI 发生后,PCT 水平下降最快。

结论

包括 PCT 在内的生物标志物组合可能有助于更准确、及时地识别 PICU 入院时的 SBI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8371/7864456/2f09d303b47b/pone.0246027.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验