Suppr超能文献

具有可定制支架整合功能的3D打印模块化并行微流控系统,用于研究基底膜拓扑结构对内皮细胞的作用。

3D-Printed, Modular, and Parallelized Microfluidic System with Customizable Scaffold Integration to Investigate the Roles of Basement Membrane Topography on Endothelial Cells.

作者信息

Jones Curtis G, Huang Tianjiao, Chung Jay H, Chen Chengpeng

机构信息

Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States.

Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, Maryland 20892, United States.

出版信息

ACS Biomater Sci Eng. 2021 Apr 12;7(4):1600-1607. doi: 10.1021/acsbiomaterials.0c01752. Epub 2021 Feb 5.

Abstract

Because dysfunctions of endothelial cells are involved in many pathologies, endothelial cell models for pathophysiological and pharmaceutical studies have been a valuable research tool. Although numerous microfluidic-based endothelial models have been reported, they had the cells cultured on a flat surface without considering the possible three-dimensional (3D) structure of the native extracellular matrix (ECM). Endothelial cells rest on the basement membrane , which contains an aligned microfibrous topography. To better understand and model the cells, it is necessary to know if and how the fibrous topography can affect endothelial functions. With conventional fully integrated microfluidic apparatus, it is difficult to include additional topographies in a microchannel. Therefore, we developed a modular microfluidic system by 3D-printing and electrospinning, which enabled easy integration and switching of desired ECM topographies. Also, with standardized designs, the system allowed for high flow rates up to 4000 μL/min, which encompassed the full shear stress range for endothelial studies. We found that the aligned fibrous topography on the ECM altered arginine metabolism in endothelial cells and thus increased nitric oxide production. There has not been an endothelial model like this, and the new knowledge generated thereby lays a groundwork for future endothelial research and modeling.

摘要

由于内皮细胞功能障碍涉及多种病理过程,用于病理生理和药物研究的内皮细胞模型一直是一种有价值的研究工具。尽管已经报道了许多基于微流体的内皮模型,但它们都是将细胞培养在平坦表面上,而没有考虑天然细胞外基质(ECM)可能的三维(3D)结构。内皮细胞位于含有排列成束的微纤维形貌的基底膜上。为了更好地理解和模拟这些细胞,有必要了解纤维形貌是否以及如何影响内皮细胞功能。使用传统的完全集成微流体装置,很难在微通道中加入额外的形貌。因此,我们通过3D打印和静电纺丝开发了一种模块化微流体系统,该系统能够轻松集成和切换所需的ECM形貌。此外,通过标准化设计,该系统允许高达4000μL/min的高流速,涵盖了内皮研究的全剪切应力范围。我们发现,ECM上排列的纤维形貌改变了内皮细胞中的精氨酸代谢,从而增加了一氧化氮的产生。目前还没有这样的内皮模型,由此产生的新知识为未来的内皮研究和建模奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验