Department of Clinical Sciences, Lund University, Malmö, Sweden.
Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121 Solna, Sweden.
Int J Cardiol. 2021 May 15;331:249-254. doi: 10.1016/j.ijcard.2021.01.059. Epub 2021 Feb 3.
Dyslipidemia is a hallmark of cardiovascular disease but is characterized by crude measurements of triglycerides, HDL- and LDL cholesterol. Lipidomics enables more detailed measurements of plasma lipids, which may help improve risk stratification and understand the pathophysiology of cardiovascular disease.
Lipidomics was used to measure 184 lipids in plasma samples from the Malmö Diet and Cancer - Cardiovascular Cohort (N = 3865), taken at baseline examination. During an average follow-up time of 20.3 years, 536 participants developed coronary artery disease (CAD). Least absolute shrinkage and selection operator (LASSO) were applied to Cox proportional hazards models in order to identify plasma lipids that predict CAD.
Eight plasma lipids improved prediction of future CAD on top of traditional cardiovascular risk factors. Principal component analysis of CAD-associated lipids revealed one principal component (PC2) that was associated with risk of future CAD (HR per SD increment =1.46, C·I = 1.35-1.48, P < 0.001). The risk increase for being in the highest quartile of PC2 (HR = 2.33, P < 0.001) was higher than being in the top quartile of systolic blood pressure. Addition of PC2 to traditional risk factors achieved an improvement (2%) in the area under the ROC-curve for CAD events occurring within 10 (P = 0.03), 15 (P = 0.003) and 20 (P = 0.001) years of follow-up respectively.
A lipid pattern improve CAD prediction above traditional risk factors, highlighting that conventional lipid-measures insufficiently describe dyslipidemia that is present years before CAD. Identifying this hidden dyslipidemia may help motivate lifestyle and pharmacological interventions early enough to reach a substantial reduction in absolute risk.
血脂异常是心血管疾病的一个标志,但它的特点是甘油三酯、高密度脂蛋白和低密度脂蛋白胆固醇的粗略测量。脂质组学能够更详细地测量血浆脂质,这可能有助于改善风险分层和理解心血管疾病的病理生理学。
脂质组学用于测量来自马尔默饮食与癌症-心血管队列(N=3865)的血浆样本中的 184 种脂质,这些样本是在基线检查时采集的。在平均 20.3 年的随访期间,536 名参与者发生了冠心病(CAD)。最小绝对收缩和选择算子(LASSO)被应用于 Cox 比例风险模型,以确定预测 CAD 的血浆脂质。
在传统心血管危险因素的基础上,有八种血浆脂质可改善对未来 CAD 的预测。与 CAD 相关的脂质的主成分分析显示,一个主成分(PC2)与未来 CAD 的风险相关(每 SD 增量的 HR = 1.46,C·I= 1.35-1.48,P < 0.001)。处于 PC2 最高四分位数的风险增加(HR=2.33,P < 0.001)高于处于收缩压最高四分位数的风险增加。将 PC2 加入传统危险因素可提高 10 年(P=0.03)、15 年(P=0.003)和 20 年(P=0.001)随访期间 CAD 事件的 ROC 曲线下面积(分别增加 2%)。
一种脂质模式可在传统危险因素之上改善 CAD 预测,这突出表明常规脂质测量不能充分描述 CAD 发生前数年存在的血脂异常。识别这种隐匿性血脂异常可能有助于促使生活方式和药物干预及早进行,以达到绝对风险的实质性降低。