Suppr超能文献

临床自然语言处理在放射肿瘤学中的应用:综述与实用入门

Clinical Natural Language Processing for Radiation Oncology: A Review and Practical Primer.

机构信息

Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts; Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts; Artificial Intelligence in Medicine Program, Brigham and Women's Hospital, Boston, Massachusetts.

Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts.

出版信息

Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):641-655. doi: 10.1016/j.ijrobp.2021.01.044. Epub 2021 Feb 3.

Abstract

Natural language processing (NLP), which aims to convert human language into expressions that can be analyzed by computers, is one of the most rapidly developing and widely used technologies in the field of artificial intelligence. Natural language processing algorithms convert unstructured free text data into structured data that can be extracted and analyzed at scale. In medicine, this unlocking of the rich, expressive data within clinical free text in electronic medical records will help untap the full potential of big data for research and clinical purposes. Recent major NLP algorithmic advances have significantly improved the performance of these algorithms, leading to a surge in academic and industry interest in developing tools to automate information extraction and phenotyping from clinical texts. Thus, these technologies are poised to transform medical research and alter clinical practices in the future. Radiation oncology stands to benefit from NLP algorithms if they are appropriately developed and deployed, as they may enable advances such as automated inclusion of radiation therapy details into cancer registries, discovery of novel insights about cancer care, and improved patient data curation and presentation at the point of care. However, challenges remain before the full value of NLP is realized, such as the plethora of jargon specific to radiation oncology, nonstandard nomenclature, a lack of publicly available labeled data for model development, and interoperability limitations between radiation oncology data silos. Successful development and implementation of high quality and high value NLP models for radiation oncology will require close collaboration between computer scientists and the radiation oncology community. Here, we present a primer on artificial intelligence algorithms in general and NLP algorithms in particular; provide guidance on how to assess the performance of such algorithms; review prior research on NLP algorithms for oncology; and describe future avenues for NLP in radiation oncology research and clinics.

摘要

自然语言处理(NLP)旨在将人类语言转换为计算机可以分析的表达式,是人工智能领域发展最快、应用最广泛的技术之一。自然语言处理算法将非结构化的自由文本数据转换为可大规模提取和分析的结构化数据。在医学领域,这种从电子病历的临床自由文本中解锁丰富、有表现力的数据,将有助于挖掘大数据在研究和临床方面的全部潜力。最近,NLP 算法的重大进展显著提高了这些算法的性能,导致学术界和工业界对开发工具以自动从临床文本中提取信息和进行表型分析的兴趣大增。因此,这些技术有望在未来改变医学研究和临床实践。如果能够正确开发和部署 NLP 算法,放射肿瘤学将从中受益,因为它们可以实现自动化将放射治疗细节纳入癌症登记系统、发现癌症护理方面的新见解以及改进患者数据管理和在护理点呈现等进展。然而,在充分发挥 NLP 的价值之前,仍然存在一些挑战,例如放射肿瘤学特有的大量专业术语、非标准命名法、缺乏可用于模型开发的公开标记数据以及放射肿瘤学数据孤岛之间的互操作性限制。成功开发和实施高质量、高价值的放射肿瘤学 NLP 模型需要计算机科学家和放射肿瘤学社区之间的密切合作。在这里,我们介绍了人工智能算法和 NLP 算法的概述;提供了如何评估这些算法性能的指导;回顾了之前关于肿瘤学 NLP 算法的研究;并描述了 NLP 在放射肿瘤学研究和临床中的未来发展方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验