Suppr超能文献

自然语言处理及其对药物安全未来的影响:对近期进展和挑战的叙述性综述。

Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges.

机构信息

Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania.

Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts.

出版信息

Pharmacotherapy. 2018 Aug;38(8):822-841. doi: 10.1002/phar.2151. Epub 2018 Jul 22.

Abstract

The safety of medication use has been a priority in the United States since the late 1930s. Recently, it has gained prominence due to the increasing amount of data suggesting that a large amount of patient harm is preventable and can be mitigated with effective risk strategies that have not been sufficiently adopted. Adverse events from medications are part of clinical practice, but the ability to identify a patient's risk and to minimize that risk must be a priority. The ability to identify adverse events has been a challenge due to limitations of available data sources, which are often free text. The use of natural language processing (NLP) may help to address these limitations. NLP is the artificial intelligence domain of computer science that uses computers to manipulate unstructured data (i.e., narrative text or speech data) in the context of a specific task. In this narrative review, we illustrate the fundamentals of NLP and discuss NLP's application to medication safety in four data sources: electronic health records, Internet-based data, published literature, and reporting systems. Given the magnitude of available data from these sources, a growing area is the use of computer algorithms to help automatically detect associations between medications and adverse effects. The main benefit of NLP is in the time savings associated with automation of various medication safety tasks such as the medication reconciliation process facilitated by computers, as well as the potential for near-real-time identification of adverse events for postmarketing surveillance such as those posted on social media that would otherwise go unanalyzed. NLP is limited by a lack of data sharing between health care organizations due to insufficient interoperability capabilities, inhibiting large-scale adverse event monitoring across populations. We anticipate that future work in this area will focus on the integration of data sources from different domains to improve the ability to identify potential adverse events more quickly and to improve clinical decision support with regard to a patient's estimated risk for specific adverse events at the time of medication prescription or review.

摘要

药物使用的安全性自 20 世纪 30 年代末以来一直是美国的首要任务。最近,由于越来越多的数据表明,大量的患者伤害是可以预防的,可以通过尚未充分采用的有效风险策略来减轻,因此药物的不良反应引起了人们的关注。药物不良反应是临床实践的一部分,但识别患者的风险并将风险降至最低必须是首要任务。由于可用数据源(通常是自由文本)的限制,识别不良反应的能力一直是一个挑战。自然语言处理 (NLP) 的使用可能有助于解决这些限制。NLP 是计算机科学的人工智能领域,它使用计算机在特定任务的上下文中处理非结构化数据(即叙述性文本或语音数据)。在本叙述性综述中,我们说明了 NLP 的基本原理,并讨论了 NLP 在四个数据源中的药物安全性应用:电子健康记录、基于互联网的数据、已发表文献和报告系统。鉴于这些来源的可用数据量巨大,一个不断发展的领域是使用计算机算法来帮助自动检测药物和不良反应之间的关联。NLP 的主要优势在于通过计算机自动完成各种药物安全任务(例如,通过计算机促进药物重整过程)来节省时间,以及在药物上市后监测(例如,在社交媒体上发布的那些)中实时或接近实时识别不良反应的潜力,否则这些不良反应将无法分析。由于互操作性能力不足,医疗保健组织之间缺乏数据共享,这限制了人群中大规模不良反应监测,从而限制了 NLP 的应用。我们预计,该领域未来的工作将集中在整合来自不同领域的数据来源,以提高更快识别潜在不良反应的能力,并改善针对特定不良反应的患者估计风险的临床决策支持,例如在药物处方或审查时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验