Elaine Marieb College of Nursing, University of Massachusetts Amherst, 224 Skinner Hall, Amherst, MA 01003, USA.
Department of Artificial Intelligence, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
Int J Environ Res Public Health. 2024 Oct 15;21(10):1357. doi: 10.3390/ijerph21101357.
There has been a growing emphasis on data across various health-related fields, not just in nursing research, due to the increasing volume of unstructured data in electronic health records (EHRs). Natural Language Processing (NLP) provides a solution by transforming this unstructured data into structured formats, thereby facilitating valuable insights. This methodology paper explores the application of NLP in nursing, using an exemplar case study that analyzes YouTube data to investigate social phenomena among adults living alone. The methodology involves five steps: accessing data through YouTube's API, data cleaning, preprocessing (tokenization, sentence segmentation, linguistic normalization), sentiment analysis using Python, and topic modeling. This study serves as a comprehensive guide for integrating NLP into nursing research, supplemented with digital content demonstrating each step. For successful implementation, nursing researchers must grasp the fundamental concepts and processes of NLP. The potential of NLP in nursing is significant, particularly in utilizing unstructured textual data from nursing documentation and social media. Its benefits include streamlining nursing documentation, enhancing patient communication, and improving data analysis.
由于电子健康记录 (EHR) 中的非结构化数据不断增加,各个与健康相关的领域都越来越重视数据,不仅仅是在护理研究领域。自然语言处理 (NLP) 通过将这些非结构化数据转换为结构化格式,提供了一种解决方案,从而为人们提供了有价值的见解。本方法学论文探讨了 NLP 在护理领域的应用,通过一个范例案例研究,分析了 YouTube 数据,以调查独居成年人中的社会现象。该方法学包括五个步骤:通过 YouTube 的 API 访问数据、数据清理、预处理(标记化、句子分割、语言规范化)、使用 Python 进行情感分析,以及主题建模。本研究为将 NLP 整合到护理研究中提供了全面的指导,并且附有演示每个步骤的数字内容。为了成功实施,护理研究人员必须掌握 NLP 的基本概念和流程。NLP 在护理领域的应用潜力巨大,特别是在利用护理文档和社交媒体中的非结构化文本数据方面。它的好处包括简化护理文档、增强患者沟通和改善数据分析。