Department of Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B. Downs Blvd., MDC08-2170, Tampa, FL 33612, USA; USF Heart Institute, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA.
Department of Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B. Downs Blvd., MDC08-2170, Tampa, FL 33612, USA; USF Heart Institute, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; Division of Cardiology, University of South Florida, 2 Tampa General Circle 3rd Floor, Tampa, FL 33606, USA.
Mol Ther. 2021 May 5;29(5):1744-1757. doi: 10.1016/j.ymthe.2021.01.032. Epub 2021 Feb 3.
Cardiovascular disease is the leading cause of death and disability worldwide. Effective delivery of cell-selective therapies that target atherosclerotic plaques and neointimal growth while sparing the endothelium remains the Achilles heel of percutaneous interventions. The current study utilizes synthetic microRNA switch therapy that self-assembles to form a compacted, nuclease-resistant nanoparticle <200 nM in size when mixed with cationic amphipathic cell-penetrating peptide (p5RHH). These nanoparticles possess intrinsic endosomolytic activity that requires endosomal acidification. When administered in a femoral artery wire injury mouse model in vivo, the mRNA-p5RHH nanoparticles deliver their payload specifically to the regions of endothelial denudation and not to the lungs, liver, kidney, or spleen. Moreover, repeated administration of nanoparticles containing a microRNA switch, consisting of synthetically modified mRNA encoding for the cyclin-dependent kinase inhibitor p27 that contains one complementary target sequence of the endothelial cell-specific miR-126 at its 5' UTR, drastically reduced neointima formation after wire injury and allowed for vessel reendothelialization. This cell-selective nanotherapy is a valuable tool that has the potential to advance the fight against neointimal hyperplasia and atherosclerosis.
心血管疾病是全球范围内导致死亡和残疾的主要原因。有效的细胞选择性治疗方法可以靶向动脉粥样硬化斑块和新生内膜生长,同时保留内皮细胞,但这仍然是经皮介入治疗的阿喀琉斯之踵。本研究利用合成 microRNA 开关治疗,当与阳离子两亲性细胞穿透肽 (p5RHH) 混合时,该治疗会自组装形成一种紧凑的、耐核酸酶的纳米颗粒,大小为 <200nm。这些纳米颗粒具有内在的内体溶酶体活性,需要内体酸化。当在体内股动脉线损伤小鼠模型中给药时,mRNA-p5RHH 纳米颗粒将其有效载荷特异性递送到内皮细胞剥脱的区域,而不是肺、肝、肾或脾。此外,重复给予含有 microRNA 开关的纳米颗粒,该开关由编码细胞周期蛋白依赖性激酶抑制剂 p27 的合成修饰 mRNA 组成,其 5'UTR 中包含内皮细胞特异性 miR-126 的一个互补靶序列,可大大减少线损伤后的新生内膜形成,并允许血管再内皮化。这种细胞选择性纳米疗法是一种有价值的工具,有可能推进对抗新生内膜增生和动脉粥样硬化的斗争。