Suppr超能文献

嗅觉和味觉丧失可准确预测新冠病毒感染:一种机器学习方法。

Loss of Smell and Taste Can Accurately Predict COVID-19 Infection: A Machine-Learning Approach.

作者信息

Callejon-Leblic María A, Moreno-Luna Ramon, Del Cuvillo Alfonso, Reyes-Tejero Isabel M, Garcia-Villaran Miguel A, Santos-Peña Marta, Maza-Solano Juan M, Martín-Jimenez Daniel I, Palacios-Garcia Jose M, Fernandez-Velez Carlos, Gonzalez-Garcia Jaime, Sanchez-Calvo Juan M, Solanellas-Soler Juan, Sanchez-Gomez Serafin

机构信息

Rhinology Unit, Department of Otolaryngology, Head and Neck Surgery, Virgen Macarena University Hospital, 41009 Seville, Spain.

Biomedical Engineering Group, University of Seville, 41092 Seville, Spain.

出版信息

J Clin Med. 2021 Feb 3;10(4):570. doi: 10.3390/jcm10040570.

Abstract

The COVID-19 outbreak has spread extensively around the world. Loss of smell and taste have emerged as main predictors for COVID-19. The objective of our study is to develop a comprehensive machine learning (ML) modelling framework to assess the predictive value of smell and taste disorders, along with other symptoms, in COVID-19 infection. A multicenter case-control study was performed, in which suspected cases for COVID-19, who were tested by real-time reverse-transcription polymerase chain reaction (RT-PCR), informed about the presence and severity of their symptoms using visual analog scales (VAS). ML algorithms were applied to the collected data to predict a COVID-19 diagnosis using a 50-fold cross-validation scheme by randomly splitting the patients in training (75%) and testing datasets (25%). A total of 777 patients were included. Loss of smell and taste were found to be the symptoms with higher odds ratios of 6.21 and 2.42 for COVID-19 positivity. The ML algorithms applied reached an average accuracy of 80%, a sensitivity of 82%, and a specificity of 78% when using VAS to predict a COVID-19 diagnosis. This study concludes that smell and taste disorders are accurate predictors, with ML algorithms constituting helpful tools for COVID-19 diagnostic prediction.

摘要

新型冠状病毒肺炎(COVID-19)疫情已在全球广泛传播。嗅觉和味觉丧失已成为COVID-19的主要预测指标。我们研究的目的是开发一个全面的机器学习(ML)建模框架,以评估嗅觉和味觉障碍以及其他症状在COVID-19感染中的预测价值。我们进行了一项多中心病例对照研究,其中对COVID-19疑似病例采用实时逆转录聚合酶链反应(RT-PCR)进行检测,并使用视觉模拟量表(VAS)让他们告知自身症状的存在情况和严重程度。将ML算法应用于收集的数据,通过随机将患者分为训练集(75%)和测试集(25%),采用50倍交叉验证方案来预测COVID-19诊断。共纳入777例患者。发现嗅觉和味觉丧失是COVID-19阳性几率较高的症状,比值比分别为6.21和2.42。当使用VAS预测COVID-19诊断时,所应用的ML算法平均准确率达到80%,敏感性为82%,特异性为78%。本研究得出结论,嗅觉和味觉障碍是准确的预测指标,ML算法是COVID-19诊断预测的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/364c/7913595/212af6cf5af3/jcm-10-00570-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验