Suppr超能文献

晚期胃癌程序性死亡配体 1 抑制剂临床反应的实用预测模型。

Practical prediction model of the clinical response to programmed death-ligand 1 inhibitors in advanced gastric cancer.

机构信息

Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju, Korea.

Genome and Company, Pangyo-ro 253, Bundang-gu. Seoungnam-si, Gyeonggi-do, Korea.

出版信息

Exp Mol Med. 2021 Feb;53(2):223-234. doi: 10.1038/s12276-021-00559-1. Epub 2021 Feb 5.

Abstract

The identification of predictive biomarkers or models is necessary for the selection of patients who might benefit the most from immunotherapy. Seven histological features (signet ring cell [SRC], fibrous stroma, myxoid stroma, tumor-infiltrating lymphocytes [TILs], necrosis, tertiary lymphoid follicles, and ulceration) detected in surgically resected tissues (N = 44) were used to train a model. The presence of SRC became an optimal decision parameter for pathology alone (AUC = 0.78). Analysis of differentially expressed genes (DEGs) for the prediction of genomic markers showed that C-X-C motif chemokine ligand 11 (CXCL11) was high in responders (P < 0.001). Immunohistochemistry (IHC) was performed to verify its potential as a biomarker. IHC revealed that the expression of CXCL11 was associated with responsiveness (P = 0.003). The response prediction model was trained by integrating the results of the analysis of pathological factors and RNA sequencing (RNA-seq). When trained with the C5.0 decision tree model, the categorical level of the expression of CXCL11, a single variable, was shown to be the best model (AUC = 0.812). The AUC of the model trained with the random forest was 0.944. Survival analysis revealed that the C5.0-trained model (log-rank P = 0.01 for progression-free survival [PFS]; log-rank P = 0.012 for overall survival [OS]) and the random forest-trained model (log-rank P < 0.001 for PFS; log-rank P = 0.001 for OS) predicted prognosis more accurately than the PD-L1 test (log-rank P = 0.031 for PFS; log-rank P = 0.107 for OS).

摘要

为了选择最有可能从免疫疗法中获益的患者,有必要确定预测性生物标志物或模型。七种在手术切除组织中检测到的组织学特征(印戒细胞 [SRC]、纤维基质、黏液样基质、肿瘤浸润淋巴细胞 [TILs]、坏死、三级淋巴滤泡和溃疡)(N=44)被用于训练模型。SRC 的存在成为单独进行病理分析的最佳决策参数(AUC=0.78)。预测基因组标志物的差异表达基因(DEGs)分析表明,C-X-C 基序趋化因子配体 11(CXCL11)在应答者中较高(P<0.001)。进行免疫组织化学(IHC)验证其作为生物标志物的潜力。IHC 显示,CXCL11 的表达与应答相关(P=0.003)。通过整合病理因素和 RNA 测序(RNA-seq)分析结果,对响应预测模型进行训练。当使用 C5.0 决策树模型进行训练时,CXCL11 表达的分类水平被证明是最佳模型(AUC=0.812)。使用随机森林训练的模型的 AUC 为 0.944。生存分析显示,C5.0 训练的模型(无进展生存期 [PFS] 的对数秩 P=0.01;总生存期 [OS] 的对数秩 P=0.012)和随机森林训练的模型(PFS 的对数秩 P<0.001;OS 的对数秩 P=0.001)比 PD-L1 测试(PFS 的对数秩 P=0.031;OS 的对数秩 P=0.107)更能准确预测预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9140/8080676/3f7db4722879/12276_2021_559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验