Suppr超能文献

构建一个结合免疫相关不良反应(IrAE)和临床特征的列线图,以预测接受抗程序性死亡蛋白1(PD-1)治疗的晚期胃食管交界腺癌患者的生存期。

Construction of a nomogram with IrAE and clinic character to predict the survival of advanced G/GEJ adenocarcinoma patients undergoing anti-PD-1 treatment.

作者信息

Wang Han, Chen Jinhua, Gao Wei, Wu Yilan, Wang Xinli, Lin Fangyu, Chen Hao, Wang Yao, Jiang Tao, Pan Zhangchi, Gao Xinyan, Liu Qing, Weng Xiaojiao, Yao Na, Zhu Yingjiao, Wu Riping, Weng Guizhen, Lin Xiaoyan

机构信息

Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China.

Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Medical University Union Hospital, Fuzhou, China.

出版信息

Front Immunol. 2024 Jul 24;15:1432281. doi: 10.3389/fimmu.2024.1432281. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to develop and validate a survival prediction model and nomogram to predict survival in patients with advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma undergoing treatment with anti-programmed cell death 1 receptor (PD-1). This model incorporates immune-related adverse events (irAEs) alongside common clinical characteristics as predictive factors.

METHOD

A dataset comprising 255 adult patients diagnosed with advanced G/GEJ adenocarcinoma was assembled. The irAEs affecting overall survival (OS) to a significant degree were identified and integrated as a candidate variable, together with 12 other candidate variables. These included gender, age, Eastern cooperative oncology group performance status (ECOG PS) score, tumor stage, human epidermal growth factor receptor 2 (HER2) expression status, presence of peritoneal and liver metastases, year and line of anti-PD-1 treatment, neutrophil-to-lymphocyte ratio (NLR), controlling nutritional status (CONUT) score, and Charlson comorbidity index (CCI). To mitigate timing bias related to irAEs, landmark analysis was employed. Variable selection was performed using the least absolute shrinkage and selection operator (LASSO) regression to pinpoint significant predictors, and the variance inflation factor was applied to address multicollinearity. Subsequently, a Cox regression analysis utilizing the forward likelihood ratio method was conducted to develop a survival prediction model, excluding variables that failed to satisfy the proportional hazards (PH) assumption. The model was developed using the entire dataset, then internally validated through bootstrap resampling and externally validated with a cohort from another Hospital. Furthermore, a nomogram was created to delineate the predictive model.

RESULTS

After consolidating irAEs from the skin and endocrine systems into a single protective irAE category and applying landmark analysis, variable selection was conducted for the prognostic prediction model along with other candidate variables. The finalized model comprised seven variables: ECOG PS score, tumor stage, HER2 expression status in tumor tissue, first-line anti-PD-1 treatment, peritoneal metastasis, CONUT score, and protective irAE. The overall concordance index for the model was 0.66. Calibration analysis verified the model's accuracy in aligning predicted outcomes with actual results. Clinical decision curve analysis indicated that utilizing this model for treatment decisions could enhance the net benefit regarding 1- and 2-year survival rates for patients.

CONCLUSION

This study developed a prognostic prediction model by integrating common clinical characteristics of irAEs and G/GEJ adenocarcinoma. This model exhibits good clinical practicality and possesses accurate predictive ability for overall survival OS in patients with advanced G/GEJ adenocarcinoma.

摘要

目的

本研究旨在开发并验证一种生存预测模型和列线图,以预测接受抗程序性细胞死亡1受体(PD-1)治疗的晚期胃癌或胃食管交界(G/GEJ)腺癌患者的生存情况。该模型将免疫相关不良事件(irAEs)与常见临床特征纳入作为预测因素。

方法

收集了一个包含255例诊断为晚期G/GEJ腺癌的成年患者的数据集。确定并整合对总生存期(OS)有显著影响的irAEs作为候选变量,以及其他12个候选变量。这些变量包括性别、年龄、东部肿瘤协作组体能状态(ECOG PS)评分、肿瘤分期、人表皮生长因子受体2(HER2)表达状态、腹膜和肝转移情况、抗PD-1治疗的年份和线数、中性粒细胞与淋巴细胞比值(NLR)、控制营养状况(CONUT)评分以及Charlson合并症指数(CCI)。为减轻与irAEs相关的时间偏倚,采用了标志性分析。使用最小绝对收缩和选择算子(LASSO)回归进行变量选择以确定显著预测因素,并应用方差膨胀因子解决多重共线性问题。随后,采用向前似然比法进行Cox回归分析以建立生存预测模型,排除不满足比例风险(PH)假设的变量。该模型使用整个数据集开发,然后通过自助重采样进行内部验证,并在另一家医院的队列中进行外部验证。此外,创建了列线图来描述预测模型。

结果

将皮肤和内分泌系统的irAEs合并为单一的保护性irAE类别并应用标志性分析后,对预后预测模型与其他候选变量进行了变量选择。最终模型包含七个变量:ECOG PS评分、肿瘤分期、肿瘤组织中HER2表达状态、一线抗PD-1治疗、腹膜转移、CONUT评分和保护性irAE。该模型的总体一致性指数为0.66。校准分析验证了模型在使预测结果与实际结果相符方面的准确性。临床决策曲线分析表明,使用该模型进行治疗决策可提高患者1年和2年生存率的净效益。

结论

本研究通过整合irAEs和G/GEJ腺癌的常见临床特征开发了一种预后预测模型。该模型具有良好的临床实用性,对晚期G/GEJ腺癌患者的总生存期OS具有准确的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/11303212/ef0b84576356/fimmu-15-1432281-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验