Suppr超能文献

G6PD 与机器学习算法作为肝肝细胞癌的预后和诊断指标。

G6PD and machine learning algorithms as prognostic and diagnostic indicators of liver hepatocellular carcinoma.

机构信息

Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.

Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, 210009, China.

出版信息

BMC Cancer. 2024 Jan 31;24(1):157. doi: 10.1186/s12885-024-11887-6.

Abstract

BACKGROUND

Liver Hepatocellular carcinoma (LIHC) exhibits a high incidence of liver cancer with escalating mortality rates over time. Despite this, the underlying pathogenic mechanism of LIHC remains poorly understood.

MATERIALS & METHODS: To address this gap, we conducted a comprehensive investigation into the role of G6PD in LIHC using a combination of bioinformatics analysis with database data and rigorous cell experiments. LIHC samples were obtained from TCGA, ICGC and GEO databases, and the differences in G6PD expression in different tissues were investigated by differential expression analysis, followed by the establishment of Nomogram to determine the percentage of G6PD in causing LIHC by examining the relationship between G6PD and clinical features, and the subsequent validation of the effect of G6PD on the activity, migration, and invasive ability of hepatocellular carcinoma cells by using the low expression of LI-7 and SNU-449. Additionally, we employed machine learning to validate and compare the predictive capacity of four algorithms for LIHC patient prognosis.

RESULTS

Our findings revealed significantly elevated G6PD expression levels in liver cancer tissues as compared to normal tissues. Meanwhile, Nomogram and Adaboost, Catboost, and Gbdt Regression analyses showed that G6PD accounted for 46%, 31%, and 49% of the multiple factors leading to LIHC. Furthermore, we observed that G6PD knockdown in hepatocellular carcinoma cells led to reduced proliferation, migration, and invasion abilities. Remarkably, the Decision Tree C5.0 decision tree algorithm demonstrated superior discriminatory performance among the machine learning methods assessed.

CONCLUSION

The potential diagnostic utility of G6PD and Decision Tree C5.0 for LIHC opens up a novel avenue for early detection and improved treatment strategies for hepatocellular carcinoma.

摘要

背景

肝肝细胞癌(LIHC)发病率高,肝癌死亡率随时间推移不断上升。尽管如此,LIHC 的潜在发病机制仍知之甚少。

材料与方法

为了解决这一差距,我们通过结合生物信息学分析与数据库数据以及严格的细胞实验,对 G6PD 在 LIHC 中的作用进行了全面研究。从 TCGA、ICGC 和 GEO 数据库中获取 LIHC 样本,通过差异表达分析研究不同组织中 G6PD 的表达差异,然后建立诺莫图,通过检查 G6PD 与临床特征之间的关系,确定 G6PD 在引起 LIHC 中的百分比,随后通过低表达 LI-7 和 SNU-449 验证 G6PD 对肝癌细胞活性、迁移和侵袭能力的影响。此外,我们还采用机器学习验证和比较了四种算法对 LIHC 患者预后的预测能力。

结果

我们的研究结果显示,肝癌组织中 G6PD 的表达水平明显高于正常组织。同时,诺莫图和 Adaboost、Catboost 和 Gbdt 回归分析表明,G6PD 占导致 LIHC 的多种因素的 46%、31%和 49%。此外,我们观察到肝癌细胞中 G6PD 的敲低导致增殖、迁移和侵袭能力降低。值得注意的是,在评估的机器学习方法中,决策树 C5.0 决策树算法表现出卓越的区分性能。

结论

G6PD 和决策树 C5.0 对 LIHC 的潜在诊断效用为肝癌的早期检测和改善治疗策略开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e3/10829225/a9da5dc0eb2a/12885_2024_11887_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验