Suppr超能文献

基于肺生物等效剂量的多区域放射组学模型的开发与验证,用于预测肺癌患者立体定向体部放疗后症状性放射性肺炎。

Development and validation of a lung biological equivalent dose-based multiregional radiomic model for predicting symptomatic radiation pneumonitis after SBRT in lung cancer patients.

作者信息

Jiao Yuxin, Feng Aihui, Li Shihong, Ren Yanping, Gao Hongbo, Chen Di, Sun Li, Zheng Xiangpeng, Lin Guangwu

机构信息

Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, China.

Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Oncol. 2024 Dec 6;14:1489217. doi: 10.3389/fonc.2024.1489217. eCollection 2024.

Abstract

BACKGROUND

This study aimed to develop and validate a multiregional radiomic-based composite model to predict symptomatic radiation pneumonitis (SRP) in non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).

MATERIALS AND METHODS

189 patients from two institutions were allocated into training, internal validation and external testing cohorts. The associations between the SRP and clinic-dosimetric factors were analyzed using univariate and multivariate regression. Radiomics features were extracted from seven discrete and three composite regions of interest (ROIs), including anatomical, physical dosimetry, and biologically equivalent dose (BED) dimensions. Correlation filters and Lasso regularization were applied for feature selection and five machine learning algorithms were utilized to construct radiomic models. Multiregional radiomic models integrating features from various regions were developed and undergone performance test in comparison with single-region models. Ultimately, three models-a radiomic model, a dosimetric model, and a combined model-were developed and evaluated using receiver operating characteristic (ROC) curve, model calibration, and decision curve analysis.

RESULTS

V (α/β = 3) of the nontarget lung volume was identified as an independent dosimetric risk factor. The multiregional radiomic models eclipsed their single-regional counterparts, notably with the incorporation of BED-based dimensions, achieving an area under the curve (AUC) of 0.816 [95% CI: 0.694-0.938]. The best predictive model for SRP was the combined model, which integrated the multiregional radiomic features with dosimetric parameters [AUC=0.828, 95% CI: 0.701-0.956]. The calibration and decision curves indicated good predictive accuracy and clinical benefit, respectively.

CONCLUSIONS

The combined model improves SRP prediction across various SBRT fractionation schemes, which warrants further validation and optimization using larger-scale retrospective data and in prospective trials.

摘要

背景

本研究旨在开发并验证一种基于多区域影像组学的复合模型,以预测接受立体定向体部放射治疗(SBRT)的非小细胞肺癌(NSCLC)患者的症状性放射性肺炎(SRP)。

材料与方法

将来自两个机构的189例患者分配到训练组、内部验证组和外部测试组。使用单因素和多因素回归分析SRP与临床剂量学因素之间的关联。从七个离散和三个复合感兴趣区域(ROI)提取影像组学特征,包括解剖学、物理剂量学和生物等效剂量(BED)维度。应用相关滤波器和Lasso正则化进行特征选择,并使用五种机器学习算法构建影像组学模型。开发整合来自不同区域特征的多区域影像组学模型,并与单区域模型进行性能测试比较。最终,开发了三种模型——影像组学模型、剂量学模型和联合模型,并使用受试者操作特征(ROC)曲线、模型校准和决策曲线分析进行评估。

结果

非靶肺体积的V(α/β = 3)被确定为独立的剂量学危险因素。多区域影像组学模型优于其单区域对应模型,特别是纳入基于BED的维度后,曲线下面积(AUC)达到0.816 [95% CI:0.694 - 0.938]。SRP的最佳预测模型是联合模型,它将多区域影像组学特征与剂量学参数相结合[AUC = 0.828,95% CI:0.701 - 0.956]。校准曲线和决策曲线分别表明具有良好的预测准确性和临床益处。

结论

联合模型可改善各种SBRT分割方案下的SRP预测,这需要使用更大规模的回顾性数据和前瞻性试验进行进一步验证和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8422/11659668/9334a2651f12/fonc-14-1489217-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验