Suppr超能文献

用于疾病预防试验中纵向离散结局的多状态模型分析的功效和样本量。

Power and sample size for multistate model analysis of longitudinal discrete outcomes in disease prevention trials.

机构信息

Clinical Trials Research Unit, University of Leeds, Leeds, UK.

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

出版信息

Stat Med. 2021 Apr 15;40(8):1960-1971. doi: 10.1002/sim.8882. Epub 2021 Feb 7.

Abstract

For clinical trials where participants pass through a number of discrete health states resulting in longitudinal measures over time, there are several potential primary estimands for the treatment effect. Incidence or time to a particular health state are commonly used outcomes but the choice of health state may not be obvious and these estimands do not make full use of the longitudinal assessments. Multistate models have been developed for some diseases and conditions with the purpose of understanding their natural history and have been used for secondary analysis to understand mechanisms of action of treatments. There is little published on the use of multistate models as the primary analysis method and potential implications on design features, such as assessment schedules. We illustrate methods via analysis of data from a motivating example; a Phase III clinical trial of pressure ulcer prevention strategies. We clarify some of the possible estimands that might be considered and we show, via a simulation study, that under some circumstances the sample size could be reduced by half using a multistate model based analysis, without adversely affecting the power of the trial.

摘要

对于参与者经历多个离散健康状态导致随时间进行纵向测量的临床试验,存在几种潜在的治疗效果主要评估指标。特定健康状态的发生率或时间是常用的结果,但健康状态的选择可能不明显,并且这些评估指标没有充分利用纵向评估。多状态模型已经为一些疾病和病症开发,目的是了解其自然史,并已用于二次分析以了解治疗作用的机制。关于将多状态模型用作主要分析方法以及对设计特征(如评估时间表)的潜在影响,发表的内容很少。我们通过对一个激励性示例(预防压疮策略的 III 期临床试验)的数据进行分析来说明方法。我们澄清了一些可能考虑的主要评估指标,并通过模拟研究表明,在某些情况下,使用基于多状态模型的分析可以将样本量减少一半,而不会对试验的效力产生不利影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验