First Department of Neurology, National and Kapodistrian University, Aiginition Hospital, Athens, Greece.
Maison Sofos Elderly Care Unit, Athens, Greece.
J Geriatr Psychiatry Neurol. 2022 May;35(3):317-320. doi: 10.1177/0891988721993556. Epub 2021 Feb 8.
Our aim was to develop a machine learning algorithm based only on non-invasively clinic collectable predictors, for the accurate diagnosis of these disorders.
This is an ongoing prospective cohort study (ClinicalTrials.gov identifier NCT number NCT04448340) of 78 PDD and 62 DLB subjects whose diagnostic follow-up is available for at least 3 years after the baseline assessment. We used predictors such as clinico-demographic characteristics, 6 neuropsychological tests (mini mental, PD Cognitive Rating Scale, Brief Visuospatial Memory test, Symbol digit written, Wechsler adult intelligence scale, trail making A and B). We investigated logistic regression, K-Nearest Neighbors (K-NNs) Support Vector Machine (SVM), Naïve Bayes classifier, and Ensemble Model for their ability to predict successfully PDD or DLB diagnosis.
The K-NN classification model had an accuracy 91.2% of overall cases based on 15 best clinical and cognitive scores achieving 96.42% sensitivity and 81% specificity on discriminating between DLB and PDD. The binomial logistic regression classification model achieved an accuracy of 87.5% based on 15 best features, showing 93.93% sensitivity and 87% specificity. The SVM classification model had an accuracy 84.6% of overall cases based on 15 best features achieving 90.62% sensitivity and 78.58% specificity. A model created on Naïve Bayes classification had 82.05% accuracy, 93.10% sensitivity and 74.41% specificity. Finally, an Ensemble model, synthesized by the individual ones, achieved 89.74% accuracy, 93.75% sensitivity and 85.73% specificity.
Machine learning method predicted with high accuracy, sensitivity and specificity PDD or DLB diagnosis based on non-invasively and easily in-the-clinic and neuropsychological tests.
我们旨在开发一种仅基于非侵入性临床可采集预测因子的机器学习算法,以准确诊断这些疾病。
这是一项正在进行的前瞻性队列研究(ClinicalTrials.gov 标识符 NCT 编号 NCT04448340),纳入了 78 例 PDD 和 62 例 DLB 患者,这些患者的诊断随访在基线评估后至少 3 年可用。我们使用了预测因子,如临床人口统计学特征、6 项神经心理学测试(简易精神状态检查、PD 认知评定量表、简短视觉空间记忆测试、符号数字写入、韦氏成人智力测验、连线测试 A 和 B)。我们研究了逻辑回归、K-最近邻(K-NN)、支持向量机(SVM)、朴素贝叶斯分类器和集成模型,以评估它们成功预测 PDD 或 DLB 诊断的能力。
K-NN 分类模型基于 15 项最佳临床和认知评分,对所有病例的准确率为 91.2%,在区分 DLB 和 PDD 方面的敏感性和特异性分别为 96.42%和 81%。基于 15 项最佳特征的二项逻辑回归分类模型的准确率为 87.5%,敏感性和特异性分别为 93.93%和 87%。SVM 分类模型基于 15 项最佳特征,对所有病例的准确率为 84.6%,敏感性和特异性分别为 90.62%和 78.58%。基于朴素贝叶斯分类的模型准确率为 82.05%,敏感性为 93.10%,特异性为 74.41%。最后,通过对个体模型进行综合,集成模型的准确率为 89.74%,敏感性为 93.75%,特异性为 85.73%。
基于非侵入性和易于在临床和神经心理学测试中采集的指标,机器学习方法可以准确、敏感且特异性地预测 PDD 或 DLB 的诊断。