Suppr超能文献

人血脑屏障芯片揭示了神经炎症条件下的屏障破坏、内皮炎症和T细胞迁移。

Human BBB-on-a-chip reveals barrier disruption, endothelial inflammation, and T cell migration under neuroinflammatory conditions.

作者信息

Nair Arya Lekshmi, Groenendijk Linda, Overdevest Roos, Fowke Tania M, Annida Rumaisha, Mocellin Orsola, de Vries Helga E, Wevers Nienke R

机构信息

MIMETAS BV, Oegstgeest, Netherlands.

Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neuroinfection and Neuroinflammation, Amsterdam, Netherlands.

出版信息

Front Mol Neurosci. 2023 Sep 25;16:1250123. doi: 10.3389/fnmol.2023.1250123. eCollection 2023.

Abstract

The blood-brain barrier (BBB) is a highly selective barrier that ensures a homeostatic environment for the central nervous system (CNS). BBB dysfunction, inflammation, and immune cell infiltration are hallmarks of many CNS disorders, including multiple sclerosis and stroke. Physiologically relevant human models of the BBB are essential to improve our understanding of its function in health and disease, identify novel drug targets, and assess potential new therapies. We present a BBB-on-a-chip model comprising human brain microvascular endothelial cells (HBMECs) cultured in a microfluidic platform that allows parallel culture of 40 chips. In each chip, a perfused HBMEC vessel was grown against an extracellular matrix gel in a membrane-free manner. BBBs-on-chips were exposed to varying concentrations of pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β) to mimic inflammation. The effect of the inflammatory conditions was studied by assessing the BBBs-on-chips' barrier function, cell morphology, and expression of cell adhesion molecules. Primary human T cells were perfused through the lumen of the BBBs-on-chips to study T cell adhesion, extravasation, and migration. Under inflammatory conditions, the BBBs-on-chips showed decreased trans-endothelial electrical resistance (TEER), increased permeability to sodium fluorescein, and aberrant cell morphology in a concentration-dependent manner. Moreover, we observed increased expression of cell adhesion molecules and concomitant monocyte adhesion. T cells extravasated from the inflamed blood vessels and migrated towards a C-X-C Motif Chemokine Ligand 12 (CXCL12) gradient. T cell adhesion was significantly reduced and a trend towards decreased migration was observed in presence of Natalizumab, an antibody drug that blocks very late antigen-4 (VLA-4) and is used in the treatment of multiple sclerosis. In conclusion, we demonstrate a high-throughput microfluidic model of the human BBB that can be used to model neuroinflammation and assess anti-inflammatory and barrier-restoring interventions to fight neurological disorders.

摘要

血脑屏障(BBB)是一种高度选择性的屏障,可确保中枢神经系统(CNS)的内环境稳态。BBB功能障碍、炎症和免疫细胞浸润是包括多发性硬化症和中风在内的许多中枢神经系统疾病的特征。与生理相关的人类BBB模型对于增进我们对其在健康和疾病中的功能的理解、确定新的药物靶点以及评估潜在的新疗法至关重要。我们展示了一种芯片上的BBB模型,该模型由在微流控平台中培养的人脑微血管内皮细胞(HBMEC)组成,该平台允许并行培养40个芯片。在每个芯片中,一个灌注的HBMEC血管以无膜方式在细胞外基质凝胶上生长。将芯片上的BBB暴露于不同浓度的促炎细胞因子肿瘤坏死因子α(TNFα)和白细胞介素-1β(IL-1β)以模拟炎症。通过评估芯片上的BBB的屏障功能、细胞形态和细胞粘附分子的表达来研究炎症条件的影响。将原代人T细胞灌注通过芯片上的BBB的管腔,以研究T细胞的粘附、渗出和迁移。在炎症条件下,芯片上的BBB显示跨内皮电阻(TEER)降低、对荧光素钠的通透性增加以及细胞形态异常,且呈浓度依赖性。此外,我们观察到细胞粘附分子的表达增加以及单核细胞粘附随之增加。T细胞从发炎的血管渗出并向C-X-C基序趋化因子配体12(CXCL12)梯度迁移。在存在那他珠单抗(一种阻断极晚期抗原-4(VLA-4)并用于治疗多发性硬化症的抗体药物)的情况下,T细胞粘附显著降低,并且观察到迁移减少的趋势。总之,我们展示了一种可用于模拟神经炎症并评估抗炎和恢复屏障干预措施以对抗神经系统疾病的高通量人类BBB微流控模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e23c/10561300/fef2b6d5e95a/fnmol-16-1250123-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验