Suppr超能文献

微生物食草动物可能有助于控制由水生游动孢子真菌引起的感染。

Microbial Grazers May Aid in Controlling Infections Caused by the Aquatic Zoosporic Fungus .

作者信息

Farthing Hazel N, Jiang Jiamei, Henwood Alexandra J, Fenton Andy, Garner Trent W J, Daversa David R, Fisher Matthew C, Montagnes David J S

机构信息

Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.

Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom.

出版信息

Front Microbiol. 2021 Jan 21;11:592286. doi: 10.3389/fmicb.2020.592286. eCollection 2020.

Abstract

Free-living eukaryotic microbes may reduce animal diseases. We evaluated the dynamics by which micrograzers (primarily protozoa) apply top-down control on the chytrid () a devastating, panzootic pathogen of amphibians. Although micrograzers consumed zoospores (∼3 μm), the dispersal stage of chytrids, not all species grew monoxenically on zoospores. However, the ubiquitous ciliate , which likely co-occurs with , grew at near its maximum rate ( = 1.7 d). A functional response (ingestion vs. prey abundance) for , measured using spore-surrogates (microspheres) revealed maximum ingestion ( ) of 1.63 × 10 zoospores d, with a half saturation constant () of 5.75 × 10 zoospores ml. Using these growth and grazing data we developed and assessed a population model that incorporated chytrid-host and micrograzer dynamics. Simulations using our data and realistic parameters obtained from the literature suggested that micrograzers could control and potentially prevent chytridiomycosis (defined as 10 sporangia host). However, simulated inferior micrograzers (0.7 × and 1.5 × ) did not prevent chytridiomycosis, although they ultimately reduced pathogen abundance to below levels resulting in disease. These findings indicate how micrograzer responses can be applied when modeling disease dynamics for and other zoosporic fungi.

摘要

自由生活的真核微生物可能会减少动物疾病。我们评估了微型食草动物(主要是原生动物)对壶菌(一种两栖动物毁灭性的、泛动物疫情病原体)进行自上而下控制的动态过程。尽管微型食草动物消耗游动孢子(约3微米),即壶菌的传播阶段,但并非所有物种都能在游动孢子上进行单种培养生长。然而,无处不在的纤毛虫,可能与壶菌共生,其生长速率接近最大值(r = 1.7天)。使用孢子替代物(微球)测量的纤毛虫功能反应(摄食与猎物丰度)显示,最大摄食量(Imax)为1.63×10个游动孢子/天,半饱和常数(Ks)为5.75×10个游动孢子/毫升。利用这些生长和摄食数据,我们开发并评估了一个纳入壶菌-宿主和微型食草动物动态的种群模型。使用我们的数据和从文献中获得的现实参数进行的模拟表明,微型食草动物可以控制壶菌,并有可能预防壶菌病(定义为每宿主10个孢子囊)。然而,模拟的劣质微型食草动物(0.7×Imax和1.5×Imax)虽然最终将病原体丰度降低到导致疾病的水平以下,但并不能预防壶菌病。这些发现表明,在为壶菌和其他游动孢子真菌建立疾病动态模型时,微型食草动物的反应如何应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edfc/7858660/182e43df0722/fmicb-11-592286-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验