Aliashrafi Morteza, Nasehi Mohammad, Zarrindast Mohammad-Reza, Joghataei Mohammad Taghi, Zali Hakimeh, Siadat Seyed Davar
Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
Shahid Beheshti University, Tehran, Iran.
J Diabetes Metab Disord. 2020 Jun 23;19(2):783-804. doi: 10.1007/s40200-020-00564-7. eCollection 2020 Dec.
Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to select the genes associated with Propionic acid (PPA) and compromise Alzheimer's disease (AD) to find the possible roles of PPA in AD pathogenesis.
Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to select the genes associated with Propionic acid (PPA) and compromise Alzheimer's disease (AD) to find the possible roles of PPA in AD pathogenesis.
Amongst all genes associated with PPA and AD, 284 genes to be shared by searching databases and were subjected to further analysis. AD-PPA genes mainly involved in cancer, bacterial and virus infection, and neurological and non-neurological diseases. Gene Ontology and pathway analysis covered the most AD hallmark, such as amyloid formation, apoptosis, proliferation, inflammation, and immune system. Network analysis revealed hub and bottleneck genes. MCODE analysis also indicated the seed genes represented in the significant subnetworks. and were the hub, bottleneck, and seed genes.
PPA interacted genes implicated in AD act through pathways initiate neuronal cell death. In sum up, AD-PPA shared genes exhibited evidence that supports the idea PPA secreted from bacteria could alter brain physiology toward the emerging AD signs. This idea needs to confirm by more future investigation in animal models.
微生物群衍生的代谢产物可使脑组织向神经退行性疾病转变。本研究旨在筛选与丙酸(PPA)相关且与阿尔茨海默病(AD)相关的基因,以探究PPA在AD发病机制中的可能作用。
微生物群衍生的代谢产物可使脑组织向神经退行性疾病转变。本研究旨在筛选与丙酸(PPA)相关且与阿尔茨海默病(AD)相关的基因,以探究PPA在AD发病机制中的可能作用。
在所有与PPA和AD相关的基因中,通过检索数据库共筛选出284个基因,并对其进行进一步分析。AD-PPA基因主要涉及癌症、细菌和病毒感染以及神经和非神经疾病。基因本体论和通路分析涵盖了大多数AD特征,如淀粉样蛋白形成、细胞凋亡、增殖、炎症和免疫系统。网络分析揭示了枢纽基因和瓶颈基因。MCODE分析还表明了在重要子网络中代表的种子基因。[此处原文缺失两个基因名称]是枢纽基因、瓶颈基因和种子基因。
与AD相关的PPA相互作用基因通过引发神经元细胞死亡的途径发挥作用。总之,AD-PPA共享基因显示出证据支持细菌分泌的PPA可使脑生理向新出现的AD体征转变这一观点。这一观点需要在未来更多的动物模型研究中得到证实。