Eiken Tor, Harrison Amelia J, Burdon Catriona A, Groeller Herbert, Peoples Gregory E
Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.
Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, Australia.
Temperature (Austin). 2020 Sep 16;8(1):30-38. doi: 10.1080/23328940.2020.1810199. eCollection 2021.
A cardiovascular requirement to facilitate thermal homeostasis may partly contribute to the elevated heart rate during eccentric cycling. This study compared the body temperature response to a bout of eccentric (ECC) and concentric (CON) cycling to account for the difference in heart rate. Eight ( = 8) aerobically trained males (age 35 y [SD 8], peak oxygen consumption 3.82 L.min [SD 0.79]) completed an ECC cycling trial (60% PPO) followed by an oxygen consumption/duration matched CON trial (30 , 35% RH) on a separate day. Trial termination was determined as an elevation in aural temperature, a surrogate of deep body temperature, by +0.5 during ECC. Mean skin (8-sites) and body temperature (weighting of 80:20 for auditory canal and mean skin temperature) were calculated. Matching the oxygen consumption between the trials increased external work during ECC cycling (CON: 71 [SD 14] ECC: 194 [SD 38] W, p < 0.05) and elevated aural temperature (+0.5 ) by 20 min 32 s [SD 9 min 19 s] in that trial. The peak rate of rise in aural temperature was significantly greater in ECC (CON: 0.012 [SD 0.007] ECC: 0.031 [SD 0.002] C.s, p < 0.05). Aural, mean skin and body temperature were significantly higher during the ECC trial (p < 0.05) and this was accompanied by elevated mean heart rate (CON: 103 [SD 14] ECC: 118 [SD 12] b.min, p < 0.05) and thermal discomfort (p < 0.05). Moderate load eccentric cycling imposes an elevated thermal strain when compared to concentric cycling. This requirement for dissipating heat, in part, explains the elevated heart rate during eccentric cycling.
促进热稳态的心血管需求可能部分导致了离心骑行过程中心率升高。本研究比较了一次离心(ECC)和向心(CON)骑行 bout 期间的体温反应,以解释心率差异。八名(n = 8)有氧训练男性(年龄 35 岁[标准差 8],峰值耗氧量 3.82 L·min[标准差 0.79])在不同日期完成了一次 ECC 骑行试验(60%PPO),随后进行了一次耗氧量/持续时间匹配的 CON 试验(30℃,35%相对湿度)。试验终止的判定标准是在 ECC 期间耳温升高,耳温是深部体温的替代指标,升高 0.5℃。计算平均皮肤温度(8 个部位)和体温(外耳道和平均皮肤温度的权重为 80:20)。使两次试验的耗氧量匹配增加了 ECC 骑行期间的外部功(CON:71[标准差 14];ECC:194[标准差 38]W,p < 0.05),并使该试验中耳温升高 0.5℃的时间提前至 20 分 32 秒[标准差 9 分 19 秒]。ECC 中耳温的峰值上升速率显著更高(CON:0.012[标准差 0.007];ECC:0.031[标准差 0.002]℃·s,p < 0.05)。ECC 试验期间耳温、平均皮肤温度和体温显著更高(p < 0.05),同时平均心率升高(CON:103[标准差 14];ECC:118[标准差 12]次·min,p < 0.05)且热不适感增加(p < 0.05)。与向心骑行相比,中等负荷离心骑行会带来更高的热应激。这种散热需求部分解释了离心骑行期间心率升高的原因。