Farrugia Jessica, Griffin Sholeem, Valdramidis Vasilis P, Camilleri Kenneth, Falzon Owen
Centre for Biomedical Cybernetics, University of Malta, Msida, Malta.
Department of Food Sciences and Nutrition, University of Malta, Msida, Malta.
Curr Res Food Sci. 2021 Jan 11;4:18-27. doi: 10.1016/j.crfs.2020.12.003. eCollection 2021.
The application of non-destructive process analytical technologies in the area of food science got a lot of attention the past years. In this work we used hyperspectral imaging to detect mould on milk agar and cheese. Principal component analysis is applied to hyperspectral data to localise and visualise mycelia on the samples' surface. It is also shown that the PCA loadings obtained from a set of training samples can be applied to hyperspectral data from new test samples to detect the presence of mould on these. For both the agar and cheeselets, the first three principal components contained more than 99 of the total variance. The spatial projection of the second principal component highlights the presence of mould on cheeselets. The proposed analysis methods can be adopted in industry to detect mould on cheeselets at an early stage and with further testing this application may also be extended to other food products.
在过去几年中,无损过程分析技术在食品科学领域的应用受到了广泛关注。在这项工作中,我们使用高光谱成像技术检测牛奶琼脂和奶酪上的霉菌。主成分分析应用于高光谱数据,以定位和可视化样品表面的菌丝体。研究还表明,从一组训练样本中获得的主成分分析载荷可应用于新测试样本的高光谱数据,以检测这些样本上霉菌的存在。对于琼脂和小奶酪块,前三个主成分包含了总方差的99%以上。第二主成分的空间投影突出了小奶酪块上霉菌的存在。所提出的分析方法可在工业中采用,以早期检测小奶酪块上的霉菌,并且通过进一步测试,该应用还可能扩展到其他食品。