Suppr超能文献

高光谱成像和深度学习在工业条件下检测白鱼中的寄生虫。

Hyperspectral imaging and deep learning for parasite detection in white fish under industrial conditions.

机构信息

Department of Seafood Industry, Nofima AS, P.O. Box 6122, 9291, Tromsö, Norway.

Department of Computer Science, UiT, The Arctic University of Norway, Hansine Hansens Veg 18, 9009, Tromsö, Norway.

出版信息

Sci Rep. 2024 Nov 9;14(1):27426. doi: 10.1038/s41598-024-76808-w.

Abstract

Parasites in fish muscle present a significant problem for the seafood industry in terms of both quality and health and safety, but the low contrast between parasites and fish tissue makes them exceedingly difficult to detect. The traditional method to identify nematodes requires removing fillets from the production line for manual inspection on candling tables. This technique is slow, labor intensive and typically only finds about half the parasites present. The seafood industry has struggled for decades to develop a method that can improve the detection rate while being performed in a rapid, non-invasive manner. In this study, a newly developed solution uses deep neural networks to simultaneously analyze the spatial and spectral information of hyperspectral imaging data. The resulting technology can be directly integrated into existing industrial processing lines to rapidly identify nematodes at detection rates (73%) better than conventional manual inspection (50%).

摘要

鱼类肌肉中的寄生虫对海鲜行业的质量和健康与安全构成了重大问题,但寄生虫与鱼组织之间的低对比度使得它们极难检测。传统的线虫识别方法需要从生产线上取下鱼片,然后在烛光台上进行手动检查。这种技术速度慢,劳动强度大,通常只能发现存在的寄生虫的一半左右。几十年来,海鲜行业一直在努力开发一种能够在快速、非侵入性的方式下提高检测率的方法。在这项研究中,一种新开发的解决方案使用深度神经网络同时分析高光谱成像数据的空间和光谱信息。该技术可以直接集成到现有的工业处理线中,以比传统的手动检查(73%)更好的检测率(73%)快速识别线虫。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2e6/11550473/5dc291479a05/41598_2024_76808_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验