Suppr超能文献

利用高斯过程提取胎儿心率记录的可解释特征

EXTRACTING INTERPRETABLE FEATURES FOR FETAL HEART RATE RECORDINGS WITH GAUSSIAN PROCESSES.

作者信息

Feng Guanchao, Quirk J Gerald, Djurić Petar M

机构信息

Department of Electrical and Computer Engineering, Stony Brook University.

Department of Obstetrics/Gynecology, Stony Brook University Hospital Stony Brook, NY 11794.

出版信息

Int Workshop Comput Adv Multisens Adapt Process. 2019 Dec;2019:381-385. doi: 10.1109/CAMSAP45676.2019.9022670. Epub 2020 Mar 5.

Abstract

During labor, fetal heart rate (FHR) and uterine activity (UA) are continuously monitored with Cardiotocography (CTG). The FHR and UA signals are visually inspected by obstetricians to assess the fetal well-being. However, due to the subjectivity of the visual inspection, the evaluations of CTG recordings performed by obstetricians have high inter- and intra-variability. The computerized analysis of FHR relies on features either hand-crafted by experts or automatically learned by machine learning methods. However, the popular interpretable FHR features, in general, have low correlation with the pH value of the umbilical cord blood at birth, which is the current gold standard for labeling FHRs in the computerized analysis of FHRs. The features found by machine learning methods, by contrast, usually have limited interpretability. In this paper, in a follow up of our previous work on FHR analysis using Gaussian processes (GPs), we explore the possibility of using the hyperparameters of GPs as interpretable features. Our results indicate that some GP features achieve high correlation with the pH values, while at the same time they are not highly correlated with other popular features.

摘要

在分娩过程中,使用胎心监护仪(CTG)持续监测胎儿心率(FHR)和子宫活动(UA)。产科医生通过目视检查FHR和UA信号来评估胎儿的健康状况。然而,由于目视检查的主观性,产科医生对CTG记录的评估在不同医生之间以及同一医生不同时间之间存在很大差异。FHR的计算机化分析依赖于专家手工制作的特征或通过机器学习方法自动学习的特征。然而,一般来说,流行的可解释FHR特征与出生时脐带血pH值的相关性较低,而脐带血pH值是目前FHR计算机化分析中标记FHR的金标准。相比之下,通过机器学习方法发现的特征通常可解释性有限。在本文中,作为我们之前使用高斯过程(GPs)进行FHR分析工作的后续研究,我们探索了将GPs的超参数用作可解释特征的可能性。我们的结果表明,一些GP特征与pH值具有高度相关性,同时它们与其他流行特征的相关性并不高。

相似文献

1
EXTRACTING INTERPRETABLE FEATURES FOR FETAL HEART RATE RECORDINGS WITH GAUSSIAN PROCESSES.利用高斯过程提取胎儿心率记录的可解释特征
Int Workshop Comput Adv Multisens Adapt Process. 2019 Dec;2019:381-385. doi: 10.1109/CAMSAP45676.2019.9022670. Epub 2020 Mar 5.
2
Cardiotocography analysis by empirical dynamic modeling and Gaussian processes.基于经验动态建模和高斯过程的胎心监护分析
Front Bioeng Biotechnol. 2023 Jan 12;10:1057807. doi: 10.3389/fbioe.2022.1057807. eCollection 2022.
5
[A new approach to quantitative electronic foetal heart-rate analysis].[定量电子胎儿心率分析的新方法]
Z Geburtshilfe Neonatol. 2010 Jan;214(1):1-10. doi: 10.1055/s-0029-1243163. Epub 2010 Feb 12.
8
CTG Analyzer: A graphical user interface for cardiotocography.CTG分析仪:一种用于胎心监护的图形用户界面。
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2606-2609. doi: 10.1109/EMBC.2017.8037391.
10
[CTG: microfluctuation].[CTG:微小波动]
Z Geburtshilfe Neonatol. 2004 Dec;208(6):210-9. doi: 10.1055/s-2004-835867.

引用本文的文献

1
IMPROVING PHASE-RECTIFIED SIGNAL AVERAGING FOR FETAL HEART RATE ANALYSIS.改进用于胎儿心率分析的相位整流信号平均法
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022. doi: 10.1109/icassp43922.2022.9747860. Epub 2022 Apr 27.

本文引用的文献

1
INFERENCE ABOUT CAUSALITY FROM CARDIOTOCOGRAPHY SIGNALS USING GAUSSIAN PROCESSES.利用高斯过程从心电图信号推断因果关系
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:2852-2856. doi: 10.1109/icassp.2019.8683052. Epub 2019 Apr 17.
4
Fetal heart rate monitoring.胎儿心率监测
Semin Fetal Neonatal Med. 2015 Jun;20(3):144-8. doi: 10.1016/j.siny.2015.02.002. Epub 2015 Mar 11.
7
Open access intrapartum CTG database.开放获取的产时电子胎心监护数据库
BMC Pregnancy Childbirth. 2014 Jan 13;14:16. doi: 10.1186/1471-2393-14-16.
9
Intrapartum prediction of fetal status and assessment of labour progress.
Baillieres Clin Obstet Gynaecol. 1994 Sep;8(3):567-81. doi: 10.1016/s0950-3552(05)80199-3.
10
Numerical analysis of the human fetal heart rate: the quality of ultrasound records.
Am J Obstet Gynecol. 1981 Sep 1;141(1):43-52. doi: 10.1016/0002-9378(81)90673-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验