IEEE Trans Med Imaging. 2021 May;40(5):1484-1498. doi: 10.1109/TMI.2021.3057704. Epub 2021 Apr 30.
Fluorescence molecular tomography (FMT) is a new type of medical imaging technology that can quantitatively reconstruct the three-dimensional distribution of fluorescent probes in vivo. Traditional Lp norm regularization techniques used in FMT reconstruction often face problems such as over-sparseness, over-smoothness, spatial discontinuity, and poor robustness. To address these problems, this paper proposes an adaptive parameter search elastic net (APSEN) method that is based on elastic net regularization, using weight parameters to combine the L1 and L2 norms. For the selection of elastic net weight parameters, this approach introduces the L0 norm of valid reconstruction results and the L2 norm of the residual vector, which are used to adjust the weight parameters adaptively. To verify the proposed method, a series of numerical simulation experiments were performed using digital mice with tumors as experimental subjects, and in vivo experiments of liver tumors were also conducted. The results showed that, compared with the state-of-the-art methods with different light source sizes or distances, Gaussian noise of 5%-25%, and the brute-force parameter search method, the APSEN method has better location accuracy, spatial resolution, fluorescence yield recovery ability, morphological characteristics, and robustness. Furthermore, the in vivo experiments demonstrated the applicability of APSEN for FMT.
荧光分子断层成像(FMT)是一种新型医学成像技术,可定量重建体内荧光探针的三维分布。传统 FMT 重建中使用的 Lp 范数正则化技术常常面临过度稀疏、过度平滑、空间不连续和鲁棒性差等问题。为了解决这些问题,本文提出了一种基于弹性网正则化的自适应参数搜索弹性网(APSEN)方法,该方法使用权重参数结合 L1 和 L2 范数。对于弹性网权重参数的选择,该方法引入了有效重建结果的 L0 范数和残差向量的 L2 范数,用于自适应调整权重参数。为了验证所提出的方法,使用带有肿瘤的数字老鼠作为实验对象进行了一系列数值模拟实验,并且还进行了肝脏肿瘤的体内实验。结果表明,与具有不同光源尺寸或距离、5%-25%高斯噪声和暴力参数搜索方法的最新方法相比,APSEN 方法具有更好的定位精度、空间分辨率、荧光产率恢复能力、形态特征和鲁棒性。此外,体内实验证明了 APSEN 对于 FMT 的适用性。