Suppr超能文献

基于自适应分组最小角回归的荧光分子断层成像重建

Reconstruction based on adaptive group least angle regression for fluorescence molecular tomography.

作者信息

An Yu, Wang Hanfan, Li Jiaqian, Li Guanghui, Ma Xiaopeng, Du Yang, Tian Jie

机构信息

the Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, School of Engineering Medicine, Beihang University, Beijing, 100191, China.

the CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Biomed Opt Express. 2023 Apr 24;14(5):2225-2239. doi: 10.1364/BOE.486451. eCollection 2023 May 1.

Abstract

Fluorescence molecular tomography can combine two-dimensional fluorescence imaging with anatomical information to reconstruct three-dimensional images of tumors. Reconstruction based on traditional regularization with tumor sparsity priors does not take into account that tumor cells form clusters, so it performs poorly when multiple light sources are used. Here we describe reconstruction based on an "adaptive group least angle regression elastic net" (AGLEN) method, in which local spatial structure correlation and group sparsity are integrated with elastic net regularization, followed by least angle regression. The AGLEN method works iteratively using the residual vector and a median smoothing strategy in order to adaptively obtain a robust local optimum. The method was verified using numerical simulations as well as imaging of mice bearing liver or melanoma tumors. AGLEN reconstruction performed better than state-of-the-art methods with different sizes of light sources at different distances from the sample and in the presence of Gaussian noise at 5-25%. In addition, AGLEN-based reconstruction accurately imaged tumor expression of cell death ligand-1, which can guide immunotherapy.

摘要

荧光分子断层成像可以将二维荧光成像与解剖学信息相结合,以重建肿瘤的三维图像。基于具有肿瘤稀疏性先验的传统正则化的重建方法没有考虑到肿瘤细胞会形成簇,因此在使用多个光源时表现不佳。在这里,我们描述了基于“自适应组最小角回归弹性网”(AGLEN)方法的重建,该方法将局部空间结构相关性和组稀疏性与弹性网正则化相结合,然后进行最小角回归。AGLEN方法使用残差向量和中值平滑策略进行迭代工作,以便自适应地获得稳健的局部最优解。该方法通过数值模拟以及对患有肝癌或黑色素瘤肿瘤的小鼠进行成像得到了验证。在不同距离样本的不同大小光源以及存在5%-25%高斯噪声的情况下,AGLEN重建的表现优于现有技术方法。此外,基于AGLEN的重建准确地成像了细胞死亡配体-1的肿瘤表达,这可以指导免疫治疗。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验