Suppr超能文献

Rad-GTPase 通过调节 L 型钙通道参与心率调节。

Rad-GTPase contributes to heart rate via L-type calcium channel regulation.

机构信息

Department of Physiology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America; Gill Heart and Vascular Institute, From the University of Kentucky College of Medicine, Lexington, KY, United States of America.

Department of Physiology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America.

出版信息

J Mol Cell Cardiol. 2021 May;154:60-69. doi: 10.1016/j.yjmcc.2021.01.005. Epub 2021 Feb 6.

Abstract

Sinoatrial node cardiomyocytes (SANcm) possess automatic, rhythmic electrical activity. SAN rate is influenced by autonomic nervous system input, including sympathetic nerve increases of heart rate (HR) via activation of β-adrenergic receptor signaling cascade (β-AR). L-type calcium channel (LTCC) activity contributes to membrane depolarization and is a central target of β-AR signaling. Recent studies revealed that the small G-protein Rad plays a central role in β-adrenergic receptor directed modulation of LTCC. These studies have identified a conserved mechanism in which β-AR stimulation results in PKA-dependent Rad phosphorylation: depletion of Rad from the LTCC complex, which is proposed to relieve the constitutive inhibition of Ca1.2 imposed by Rad association. Here, using a transgenic mouse model permitting conditional cardiomyocyte selective Rad ablation, we examine the contribution of Rad to the control of SANcm LTCC current (I) and sinus rhythm. Single cell analysis from a recent published database indicates that Rad is expressed in SANcm, and we show that SANcm I was significantly increased in dispersed SANcm following Rad silencing compared to those from CTRL hearts. Moreover, cRadKO SANcm I was not further increased with β-AR agonists. We also evaluated heart rhythm in vivo using radiotelemetered ECG recordings in ambulating mice. In vivo, intrinsic HR is significantly elevated in cRadKO. During the sleep phase cRadKO also show elevated HR, and during the active phase there is no significant difference. Rad-deletion had no significant effect on heart rate variability. These results are consistent with Rad governing LTCC function under relatively low sympathetic drive conditions to contribute to slower HR during the diurnal sleep phase HR. In the absence of Rad, the tonic modulated SANcm I promotes elevated sinus HR. Future novel therapeutics for bradycardia targeting Rad - LTCC can thus elevate HR while retaining βAR responsiveness.

摘要

窦房结心肌细胞(SANcm)具有自动、节律性的电活动。SAN 率受自主神经系统输入的影响,包括交感神经通过激活β肾上腺素能受体信号级联(β-AR)增加心率(HR)。L 型钙通道(LTCC)的活性有助于膜去极化,是β-AR 信号的中心靶点。最近的研究表明,小 G 蛋白 Rad 在β肾上腺素能受体指导的 LTCC 调制中发挥核心作用。这些研究确定了一个保守的机制,即β-AR 刺激导致 PKA 依赖性 Rad 磷酸化:Rad 从 LTCC 复合物中耗尽,这被认为可以减轻 Rad 缔合对 Ca1.2 的组成性抑制。在这里,我们使用允许心肌细胞选择性 Rad 消融的转基因小鼠模型,研究 Rad 对 SANcm LTCC 电流(I)和窦性节律的控制作用。来自最近发表的数据库的单细胞分析表明,Rad 在 SANcm 中表达,我们表明与对照心脏相比,Rad 沉默后分散的 SANcm 中的 SANcm I 显著增加。此外,β-AR 激动剂不能进一步增加 cRadKO 的 SANcm I。我们还使用遥测心电图记录在活动小鼠中评估体内心脏节律。在体内,cRadKO 的固有 HR 显着升高。在睡眠阶段,cRadKO 的 HR 也升高,而在活动阶段没有显着差异。Rad 缺失对心率变异性没有显着影响。这些结果表明,Rad 在相对较低的交感神经驱动条件下控制 LTCC 功能,有助于在白天睡眠阶段 HR 较慢。在没有 Rad 的情况下,紧张调制的 SANcm I 促进升高的窦性 HR。因此,针对 Rad-LTCC 的新型治疗心动过缓药物可以在保留βAR 反应性的同时提高 HR。

相似文献

1
Rad-GTPase contributes to heart rate via L-type calcium channel regulation.
J Mol Cell Cardiol. 2021 May;154:60-69. doi: 10.1016/j.yjmcc.2021.01.005. Epub 2021 Feb 6.
2
L-type channel inactivation balances the increased peak calcium current due to absence of Rad in cardiomyocytes.
J Gen Physiol. 2021 Sep 6;153(9). doi: 10.1085/jgp.202012854. Epub 2021 Jul 16.
3
Myocardial-restricted ablation of the GTPase RAD results in a pro-adaptive heart response in mice.
J Biol Chem. 2019 Jul 12;294(28):10913-10927. doi: 10.1074/jbc.RA119.008782. Epub 2019 May 30.
4
The C-terminus of Rad is required for membrane localization and L-type calcium channel regulation.
J Gen Physiol. 2024 Sep 2;156(9). doi: 10.1085/jgp.202313518. Epub 2024 Jul 11.
6
Adrenergic Ca1.2 Activation via Rad Phosphorylation Converges at α I-II Loop.
Circ Res. 2021 Jan 8;128(1):76-88. doi: 10.1161/CIRCRESAHA.120.317839. Epub 2020 Oct 22.
7
8
Rad GTPase deletion increases L-type calcium channel current leading to increased cardiac contraction.
J Am Heart Assoc. 2013 Dec 12;2(6):e000459. doi: 10.1161/JAHA.113.000459.
9
Molecular mechanisms, and selective pharmacological rescue, of Rem-inhibited CaV1.2 channels in heart.
Circ Res. 2010 Sep 3;107(5):620-30. doi: 10.1161/CIRCRESAHA.110.224717. Epub 2010 Jul 8.
10
Mechanism of adrenergic Ca1.2 stimulation revealed by proximity proteomics.
Nature. 2020 Jan;577(7792):695-700. doi: 10.1038/s41586-020-1947-z. Epub 2020 Jan 22.

引用本文的文献

1
Advances in research on the correlation between LTCCBs and cardiovascular diseases: A review.
Medicine (Baltimore). 2025 Jun 20;104(25):e42799. doi: 10.1097/MD.0000000000042799.
2
The C-terminus of Rad is required for membrane localization and L-type calcium channel regulation.
J Gen Physiol. 2024 Sep 2;156(9). doi: 10.1085/jgp.202313518. Epub 2024 Jul 11.
3
Dynamic Changes in Ion Channels during Myocardial Infarction and Therapeutic Challenges.
Int J Mol Sci. 2024 Jun 12;25(12):6467. doi: 10.3390/ijms25126467.
4
Pacemaker Channels and the Chronotropic Response in Health and Disease.
Circ Res. 2024 May 10;134(10):1348-1378. doi: 10.1161/CIRCRESAHA.123.323250. Epub 2024 May 9.
5
Circadian Regulation of Cardiac Arrhythmias and Electrophysiology.
Circ Res. 2024 Mar 15;134(6):659-674. doi: 10.1161/CIRCRESAHA.123.323513. Epub 2024 Mar 14.
6
Compartmentalized cAMP signalling and control of cardiac rhythm.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220172. doi: 10.1098/rstb.2022.0172. Epub 2023 May 1.
7
Rad regulation of Ca1.2 channels controls cardiac fight-or-flight response.
Nat Cardiovasc Res. 2022 Nov;1(11):1022-1038. doi: 10.1038/s44161-022-00157-y. Epub 2022 Nov 14.
10
Adrenergic Regulation of Calcium Channels in the Heart.
Annu Rev Physiol. 2022 Feb 10;84:285-306. doi: 10.1146/annurev-physiol-060121-041653. Epub 2021 Nov 9.

本文引用的文献

1
Cells of the adult human heart.
Nature. 2020 Dec;588(7838):466-472. doi: 10.1038/s41586-020-2797-4. Epub 2020 Sep 24.
2
Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans.
Front Physiol. 2020 Mar 3;11:170. doi: 10.3389/fphys.2020.00170. eCollection 2020.
3
Mechanism of adrenergic Ca1.2 stimulation revealed by proximity proteomics.
Nature. 2020 Jan;577(7792):695-700. doi: 10.1038/s41586-020-1947-z. Epub 2020 Jan 22.
4
Cardiac Pacemaker Activity and Aging.
Annu Rev Physiol. 2020 Feb 10;82:21-43. doi: 10.1146/annurev-physiol-021119-034453. Epub 2019 Nov 22.
6
Myocardial-restricted ablation of the GTPase RAD results in a pro-adaptive heart response in mice.
J Biol Chem. 2019 Jul 12;294(28):10913-10927. doi: 10.1074/jbc.RA119.008782. Epub 2019 May 30.
7
Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program.
Development. 2019 Apr 25;146(8):dev173161. doi: 10.1242/dev.173161.
8
Cardiac CaV1.2 channels require β subunits for β-adrenergic-mediated modulation but not trafficking.
J Clin Invest. 2019 Feb 1;129(2):647-658. doi: 10.1172/JCI123878. Epub 2019 Jan 7.
10
Rad GTPase deletion attenuates post-ischemic cardiac dysfunction and remodeling.
JACC Basic Transl Sci. 2018 Feb;3(1):83-96. doi: 10.1016/j.jacbts.2017.09.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验