Department of Physiology, University of Kentucky, Lexington, KY, USA.
Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
J Gen Physiol. 2024 Sep 2;156(9). doi: 10.1085/jgp.202313518. Epub 2024 Jul 11.
L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel β subunits (CaVβ) to promote inhibition of ICa,L. In addition to CaVβ interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to β-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.
L 型钙通道电流 (ICa,L) 将电兴奋与心肌细胞的收缩联系起来。ICa,L 的紧密调节可控制心输出量。Rad 是一种 Ras 相关的单体蛋白,可与 L 型钙通道β亚基 (CaVβ) 结合,促进 ICa,L 的抑制。除了 Rad 核心基序赋予的 CaVβ相互作用外,高度保守的 Rad C 端可在体外指导膜结合,并抑制永生化细胞系中的 ICa,L。在这项工作中,我们检验了这样一个假设,即在心肌细胞中,Rad 的多碱性 C 端赋予 T 管定位,并且膜靶向对于 Rad 依赖的 ICa,L 调节是必需的。我们在内源性小鼠 Rrad 基因的 N 端引入了一个 3xFlag 表位,以方便分析亚细胞定位。全长 3xFlag-Rad (Flag-Rad) 小鼠与第二个转基因小鼠模型进行了比较,其中 3xFlag-Rad 的延伸多碱性 C 端在丙氨酸 277 处被截断 (Flag-RadΔCT)。分离心室心肌细胞进行抗 Flag-Rad 免疫细胞化学和离体电生理学分析。全长 Flag-Rad 显示出重复的 T 管图案,而 Flag-RadΔCT 未能显示膜结合。Flag-RadΔCT 心肌细胞中的 ICa,L 表现出更极化的激活中点和最大电导增加。此外,Flag-RadΔCT 细胞中的电流衰减更快。心肌中的 Rad C 端缺失模型复制了 ICa,L 的调节,这种调节是对 β-AR 刺激的反应。从机制上讲,多碱性 Rad C 端通过膜结合赋予 CaV1.2 调节。干扰 Rad 膜结合构成了增强心脏功能的特定靶点,可作为射血分数降低的心力衰竭的治疗方法。