Guo Wenpeng, Tang Li, Zhou Biqiang, Fung Yingsing
First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
The University of Hong Kong, Hong Kong, China.
Micromachines (Basel). 2021 Feb 4;12(2):153. doi: 10.3390/mi12020153.
Micromixers play an important role in many modular microfluidics. Complex on-chip mixing units and smooth channel surfaces ablated by lasers on polymers are well-known problems for microfluidic chip fabricating techniques. However, little is known about the ablation of rugged surfaces on polymer chips for mixing uses. This paper provides the first report of an on-chip compact micromixer simply, easily and quickly fabricated using laser-ablated irregular microspheric surfaces on a polymethyl methacrylate (PMMA) microfluidic chip for continuous mixing uses in modular microfluidics. The straight line channel geometry is designed for sequential mixing of nanoliter fluids in about 1 s. The results verify that up to about 90% of fluids can be mixed in a channel only 500 µm long, 200 µm wide and 150 µm deep using the developed micromixer fabricating method under optimized conditions. The computational flow dynamics simulation and experimental result agree well with each other.
微混合器在许多模块化微流控技术中发挥着重要作用。复杂的片上混合单元以及聚合物上通过激光烧蚀形成的光滑通道表面,是微流控芯片制造技术中众所周知的问题。然而,对于用于混合用途的聚合物芯片上粗糙表面的烧蚀情况却知之甚少。本文首次报道了一种用于模块化微流控中连续混合用途的片上紧凑型微混合器,它是在聚甲基丙烯酸甲酯(PMMA)微流控芯片上利用激光烧蚀的不规则微球表面简单、轻松且快速制造而成的。直线形通道几何结构设计用于在约1秒内对纳升流体进行顺序混合。结果表明,在优化条件下,使用所开发的微混合器制造方法,在仅500微米长、200微米宽和150微米深的通道中,高达约90%的流体能够被混合。计算流体动力学模拟与实验结果吻合良好。