Suppr超能文献

基于机器学习的势能面:用 PIP 方法将基于 DFT 的势能面提升到 CCSD(T)理论水平。

Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory.

机构信息

Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA.

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.

出版信息

J Chem Phys. 2021 Feb 7;154(5):051102. doi: 10.1063/5.0038301.

Abstract

"Δ-machine learning" refers to a machine learning approach to bring a property such as a potential energy surface (PES) based on low-level (LL) density functional theory (DFT) energies and gradients close to a coupled cluster (CC) level of accuracy. Here, we present such an approach that uses the permutationally invariant polynomial (PIP) method to fit high-dimensional PESs. The approach is represented by a simple equation, in obvious notation V = V + ΔV, and demonstrated for CH, HO, and trans and cis-N-methyl acetamide (NMA), CHCONHCH. For these molecules, the LL PES, V, is a PIP fit to DFT/B3LYP/6-31+G(d) energies and gradients and ΔV is a precise PIP fit obtained using a low-order PIP basis set and based on a relatively small number of CCSD(T) energies. For CH, these are new calculations adopting an aug-cc-pVDZ basis, for HO, previous CCSD(T)-F12/aug-cc-pVQZ energies are used, while for NMA, new CCSD(T)-F12/aug-cc-pVDZ calculations are performed. With as few as 200 CCSD(T) energies, the new PESs are in excellent agreement with benchmark CCSD(T) results for the small molecules, and for 12-atom NMA, training is done with 4696 CCSD(T) energies.

摘要

“Δ-机器学习”是指一种机器学习方法,可以将势能面(PES)等性质逼近基于低水平(LL)密度泛函理论(DFT)能量和梯度的耦合簇(CC)精度。在这里,我们提出了一种使用置换不变多项式(PIP)方法拟合高维 PES 的方法。该方法用一个简单的方程表示,符号明显,V=V+ΔV,并对 CH、HO、反式和顺式-N-甲基乙酰胺(NMA)、CHCONHCH 进行了演示。对于这些分子,LL PES,V,是一个对 DFT/B3LYP/6-31+G(d)能量和梯度的 PIP 拟合,而 ΔV 是一个基于低阶 PIP 基集并使用相对较少的 CCSD(T)能量的精确 PIP 拟合。对于 CH,这些是采用 aug-cc-pVDZ 基的新计算,对于 HO,使用以前的 CCSD(T)-F12/aug-cc-pVQZ 能量,而对于 NMA,则进行新的 CCSD(T)-F12/aug-cc-pVDZ 计算。仅用 200 个 CCSD(T)能量,新的 PES 与小分子的基准 CCSD(T)结果非常吻合,而对于 12 原子 NMA,则使用 4696 个 CCSD(T)能量进行训练。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验