Suppr超能文献

咖啡摄入量与心力衰竭事件风险的关联:FHS、ARIC 研究和 CHS 的机器学习分析。

Association Between Coffee Intake and Incident Heart Failure Risk: A Machine Learning Analysis of the FHS, the ARIC Study, and the CHS.

机构信息

Computational Bioscience Program, Department of Pharmacology (L.M.S.), University of Colorado Anschutz Medical School, Aurora.

Institute for Precision Cardiovascular Medicine at the American Heart Association, Dallas, TX (L.M.S., J.L.H.).

出版信息

Circ Heart Fail. 2021 Feb;14(2):e006799. doi: 10.1161/CIRCHEARTFAILURE.119.006799. Epub 2021 Feb 9.

Abstract

BACKGROUND

Coronary heart disease, heart failure (HF), and stroke are complex diseases with multiple phenotypes. While many risk factors for these diseases are well known, investigation of as-yet unidentified risk factors may improve risk assessment and patient adherence to prevention guidelines. We investigated the diet domain in FHS (Framingham Heart Study), CHS (Cardiovascular Heart Study), and the ARIC study (Atherosclerosis Risk in Communities) to identify potential lifestyle and behavioral factors associated with coronary heart disease, HF, and stroke.

METHODS

We used machine learning feature selection based on random forest analysis to identify potential risk factors associated with coronary heart disease, stroke, and HF in FHS. We evaluated the significance of selected variables using univariable and multivariable Cox proportional hazards analysis adjusted for known cardiovascular risks. Findings from FHS were then validated using CHS and ARIC.

RESULTS

We identified multiple dietary and behavioral risk factors for cardiovascular disease outcomes including marital status, red meat consumption, whole milk consumption, and coffee consumption. Among these dietary variables, increasing coffee consumption was associated with decreasing long-term risk of HF congruently in FHS, ARIC, and CHS.

CONCLUSIONS

Higher coffee intake was found to be associated with reduced risk of HF in all three studies. Further study is warranted to better define the role, possible causality, and potential mechanism of coffee consumption as a potential modifiable risk factor for HF.

摘要

背景

冠心病、心力衰竭(HF)和中风是具有多种表型的复杂疾病。尽管这些疾病的许多风险因素已广为人知,但对尚未确定的风险因素进行研究可能会改善风险评估和患者对预防指南的依从性。我们在弗雷明汉心脏研究(FHS)、心血管心脏研究(CHS)和社区动脉粥样硬化风险研究(ARIC)中调查了饮食领域,以确定与冠心病、HF 和中风相关的潜在生活方式和行为因素。

方法

我们使用基于随机森林分析的机器学习特征选择来识别与 FHS 中的冠心病、中风和 HF 相关的潜在风险因素。我们使用单变量和多变量 Cox 比例风险分析评估选定变量的显著性,调整了已知的心血管风险。然后使用 CHS 和 ARIC 验证了 FHS 的结果。

结果

我们确定了多种与心血管疾病结局相关的饮食和行为风险因素,包括婚姻状况、红肉类消费、全脂牛奶消费和咖啡消费。在这些饮食变量中,咖啡摄入量的增加与 FHS、ARIC 和 CHS 中 HF 长期风险的降低一致相关。

结论

在所有三项研究中,较高的咖啡摄入量与 HF 风险降低相关。需要进一步研究以更好地定义咖啡作为 HF 的潜在可改变风险因素的作用、可能的因果关系和潜在机制。

相似文献

1
Association Between Coffee Intake and Incident Heart Failure Risk: A Machine Learning Analysis of the FHS, the ARIC Study, and the CHS.
Circ Heart Fail. 2021 Feb;14(2):e006799. doi: 10.1161/CIRCHEARTFAILURE.119.006799. Epub 2021 Feb 9.
3
Coffee consumption and risk of heart failure in the Physicians' Health Study.
Clin Nutr ESPEN. 2020 Dec;40:133-137. doi: 10.1016/j.clnesp.2020.09.216. Epub 2020 Oct 26.
4
Cardiovascular Disease Risk Among Cancer Survivors: The Atherosclerosis Risk In Communities (ARIC) Study.
J Am Coll Cardiol. 2022 Jul 5;80(1):22-32. doi: 10.1016/j.jacc.2022.04.042.
6
Physical Activity and Incident Heart Failure in High-Risk Subgroups: The ARIC Study.
J Am Heart Assoc. 2020 May 18;9(10):e014885. doi: 10.1161/JAHA.119.014885. Epub 2020 May 11.
7
Cyclic Guanosine Monophosphate and Risk of Incident Heart Failure and Other Cardiovascular Events: the ARIC Study.
J Am Heart Assoc. 2020 Jan 21;9(2):e013966. doi: 10.1161/JAHA.119.013966. Epub 2020 Jan 13.
8
The association of plasma lactate with incident cardiovascular outcomes: the ARIC Study.
Am J Epidemiol. 2013 Aug 1;178(3):401-9. doi: 10.1093/aje/kwt002. Epub 2013 Jun 30.
9
Metabolites Associated with Coffee Consumption and Incident Chronic Kidney Disease.
Clin J Am Soc Nephrol. 2021 Nov;16(11):1620-1629. doi: 10.2215/CJN.05520421. Epub 2021 Nov 4.
10
The association of lipoprotein(a) with incident heart failure hospitalization: Atherosclerosis Risk in Communities study.
Atherosclerosis. 2017 Jul;262:131-137. doi: 10.1016/j.atherosclerosis.2017.05.014. Epub 2017 May 12.

引用本文的文献

1
A cross-sectional analysis of coffee intake and hypertension prevalence: results from the NHANES 2005-2020.
Front Nutr. 2025 Aug 11;12:1615528. doi: 10.3389/fnut.2025.1615528. eCollection 2025.
2
Evaluating the effects of coffee consumption on the structure and function of the heart from multiple perspectives.
Front Cardiovasc Med. 2025 Apr 15;12:1453106. doi: 10.3389/fcvm.2025.1453106. eCollection 2025.
4
Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline.
Rev Cardiovasc Med. 2023 Oct 19;24(10):296. doi: 10.31083/j.rcm2410296. eCollection 2023 Oct.
5
Coffee consumption and cardiometabolic health: a comprehensive review of the evidence.
Geroscience. 2024 Dec;46(6):6473-6510. doi: 10.1007/s11357-024-01262-5. Epub 2024 Jul 4.
6
Evaluation of the responsiveness pattern to caffeine through a smart data-driven ECG non-linear multi-band analysis.
Heliyon. 2024 May 23;10(11):e31721. doi: 10.1016/j.heliyon.2024.e31721. eCollection 2024 Jun 15.
9
Coffee consumption and all-cause and cardiovascular mortality in older adults: should we consider cognitive function?
Front Nutr. 2023 Oct 24;10:1150992. doi: 10.3389/fnut.2023.1150992. eCollection 2023.

本文引用的文献

1
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
4
Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children.
Food Chem Toxicol. 2017 Nov;109(Pt 1):585-648. doi: 10.1016/j.fct.2017.04.002. Epub 2017 Apr 21.
5
Missing data and multiple imputation in clinical epidemiological research.
Clin Epidemiol. 2017 Mar 15;9:157-166. doi: 10.2147/CLEP.S129785. eCollection 2017.
7
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review.
J Am Med Inform Assoc. 2017 Jan;24(1):198-208. doi: 10.1093/jamia/ocw042. Epub 2016 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验