Department of Radiology, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia.
School of Public Health, The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
Sci Rep. 2017 May 10;7(1):1648. doi: 10.1038/s41598-017-01931-w.
Precision medicine approaches rely on obtaining precise knowledge of the true state of health of an individual patient, which results from a combination of their genetic risks and environmental exposures. This approach is currently limited by the lack of effective and efficient non-invasive medical tests to define the full range of phenotypic variation associated with individual health. Such knowledge is critical for improved early intervention, for better treatment decisions, and for ameliorating the steadily worsening epidemic of chronic disease. We present proof-of-concept experiments to demonstrate how routinely acquired cross-sectional CT imaging may be used to predict patient longevity as a proxy for overall individual health and disease status using computer image analysis techniques. Despite the limitations of a modest dataset and the use of off-the-shelf machine learning methods, our results are comparable to previous 'manual' clinical methods for longevity prediction. This work demonstrates that radiomics techniques can be used to extract biomarkers relevant to one of the most widely used outcomes in epidemiological and clinical research - mortality, and that deep learning with convolutional neural networks can be usefully applied to radiomics research. Computer image analysis applied to routinely collected medical images offers substantial potential to enhance precision medicine initiatives.
精准医学方法依赖于获得个体患者健康真实状态的精确知识,这是由他们的遗传风险和环境暴露的组合所决定的。这种方法目前受到缺乏有效和高效的非侵入性医学测试的限制,这些测试无法定义与个体健康相关的全部表型变异范围。这种知识对于改善早期干预、更好的治疗决策以及改善慢性疾病不断恶化的流行至关重要。我们提出了概念验证实验,以证明如何使用计算机图像分析技术,通过常规获取的横断面 CT 成像来预测患者的寿命,作为整体个体健康和疾病状态的替代指标。尽管数据集有限,并且使用了现成的机器学习方法,但我们的结果与以前用于长寿预测的“手动”临床方法相当。这项工作表明,放射组学技术可用于提取与流行病学和临床研究中最广泛使用的结果之一——死亡率相关的生物标志物,并且卷积神经网络的深度学习可有效地应用于放射组学研究。应用于常规收集的医学图像的计算机图像分析为增强精准医学计划提供了巨大的潜力。