Suppr超能文献

预测肺类癌肿瘤患者长期癌症特异性生存的预后列线图。

Prognostic nomogram for predicting long-term cancer-specific survival in patients with lung carcinoid tumors.

作者信息

He Yanqi, Zhao Feng, Han Qingbing, Zhou Yiwu, Zhao Shuang

机构信息

Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

Department of Cancer Center, Sichuan Academy of Medical Sciences&Sichuan Provincial People's Hospital, Chengdu, China.

出版信息

BMC Cancer. 2021 Feb 8;21(1):141. doi: 10.1186/s12885-021-07832-6.

Abstract

BACKGROUND

Lung carcinoid is a rare malignant tumor with poor survival. The current study established a nomogram model for predicting cancer-specific survival (CSS) in patients with lung carcinoid tumors.

METHODS

A total of 1956 patients diagnosed with primary lung carcinoid tumors were extracted from the Surveillance, Epidemiology, and End Results database. The specific predictors of CSS for lung carcinoid tumors were identified and integrated to build a nomogram. Validation of the nomogram was conducted using parameters concordance index (C-index), calibration plots, decision curve analyses (DCAs), and the receiver operating characteristic (ROC) curve.

RESULTS

Age at diagnosis, grade, histological type, N stage, M stage, surgery of the primary site, radiation of the primary site, and tumor size were independent prognostic factors of CSS. High discriminative accuracy of the nomogram model was shown in the training cohort (C-index = 0.873), which was also testified in the internal validation cohort (C-index = 0.861). In both cohorts, the calibration plots showed good concordance between the predicted and observed CSS at 3, 5, and 10 years. The DCA showed great potential for clinical application. The ROC curve showed superior survival predictive ability of the nomogram model (area under the curve = 0.868).

CONCLUSIONS

We developed a practical nomogram that provided independent predictions of CSS for patients with lung carcinoid tumors. This nomogram may have the potential to assist clinicians in prognostic evaluations or developing individualized therapies for patients with this neoplasm.

摘要

背景

肺类癌是一种罕见的恶性肿瘤,生存率较低。本研究建立了一个列线图模型,用于预测肺类癌患者的癌症特异性生存(CSS)情况。

方法

从监测、流行病学和最终结果数据库中提取了1956例诊断为原发性肺类癌肿瘤的患者。确定并整合肺类癌肿瘤CSS的具体预测因素,构建列线图。使用参数一致性指数(C指数)、校准图、决策曲线分析(DCA)和受试者操作特征(ROC)曲线对列线图进行验证。

结果

诊断时年龄、分级、组织学类型、N分期、M分期、原发部位手术、原发部位放疗和肿瘤大小是CSS的独立预后因素。列线图模型在训练队列中显示出较高的判别准确性(C指数 = 0.873),在内部验证队列中也得到了证实(C指数 = 0.861)。在两个队列中,校准图显示在3年、5年和10年时预测的和观察到的CSS之间具有良好的一致性。DCA显示出巨大的临床应用潜力。ROC曲线显示列线图模型具有卓越的生存预测能力(曲线下面积 = 0.868)。

结论

我们开发了一种实用的列线图,可为肺类癌肿瘤患者的CSS提供独立预测。该列线图可能有助于临床医生对该肿瘤患者进行预后评估或制定个体化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/744d/7871376/069e397aad17/12885_2021_7832_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验