Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China.
Department of Hepatobiliary Surgery, The Second Clinical College, Dalian Medical University, Dalian, China.
Cancer Med. 2021 Jan;10(2):496-506. doi: 10.1002/cam4.3613. Epub 2020 Dec 6.
Our purpose was to establish and validate a nomogram model in early hepatocellular carcinoma (HCC) patients for predicting the cancer-specific survival (CSS).
We extracted eligible data of relevant patients between 2010 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database. Further, we divided all patients into two groups (training and validation cohorts) at random (7:3). Nomogram was established using effective risk factors based on univariate and multivariate analysis. The effective performance of nomogram was evaluated using concordance index (C-index), calibration plots, decision curve analysis (DCA), and receiver operating characteristic curve (ROC).
We selected 3620 patients with early HCC including the training cohort (70%, 2536) and the validation cohort (30%, 1084). The nomogram-related C-indexes were 0.755 (95% CI: 0.739-0.771) and 0.737 (95% CI: 0.712-0.762), in the training and validation cohorts, respectively. The calibration plots showed good consistency of 3-and 5-year CSS between the actual observation and the nomogram prediction. The 3-, 5-year DCA curves also indicated that the nomogram has excellent clinical utility. The 3-, 5-year area under curve (AUC) of ROC in the training cohort were 0.783, 0.779, respectively, and 0.767, 0.766 in the validation cohort, respectively. With the establishment of nomogram, a risk stratification system was also established that could divide all patients into three risk groups, and the CSS in different groups (i.e., low risk, intermediate risk, and high risk) had a good regional division.
We developed a practical nomogram in early HCC patients for predicting the CSS, and a risk stratification system follow arisen, which provided an applicable tool for clinical management.
本研究旨在建立并验证一个适用于早期肝细胞癌(HCC)患者的列线图模型,以预测癌症特异性生存(CSS)。
我们从监测、流行病学和最终结果(SEER)数据库中提取了 2010 年至 2015 年间相关患者的合格数据。然后,我们将所有患者随机分为两组(训练集和验证集)(7:3)。基于单因素和多因素分析,使用有效的风险因素建立列线图。通过一致性指数(C-index)、校准图、决策曲线分析(DCA)和受试者工作特征曲线(ROC)评估列线图的有效性能。
我们选择了 3620 例早期 HCC 患者,包括训练集(70%,2536 例)和验证集(30%,1084 例)。训练集和验证集的列线图相关 C 指数分别为 0.755(95%CI:0.739-0.771)和 0.737(95%CI:0.712-0.762)。校准图显示,实际观察值与列线图预测值之间 3 年和 5 年 CSS 的一致性良好。3 年和 5 年 DCA 曲线也表明,该列线图具有良好的临床实用性。训练集的 3 年和 5 年 ROC 曲线下面积(AUC)分别为 0.783、0.779,验证集的 3 年和 5 年 AUC 分别为 0.767、0.766。通过建立列线图,还建立了一个风险分层系统,可以将所有患者分为三个风险组,不同组(即低风险、中风险和高风险)的 CSS 具有良好的区域划分。
我们为早期 HCC 患者建立了一个实用的列线图模型,以预测 CSS,并随之建立了一个风险分层系统,为临床管理提供了一个适用的工具。